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Disclosures & Disclaimers

* | am an employee of lonis and own lonis stock

« This material contains scientific information about investigational medicines that are not approved
by the U.S. Food and Drug Administration or any regulatory body

« All investigational medicines are being evaluated in pre-clinical and clinical trials

* Information contained within this presentation is not medical advice and decisions about care
should be directed to and discussed with your doctors



lonis has a large neurology pipeline with disease modifying
medicines
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RNA therapeutics target RNA using multiple different mechanisms
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Advances in medicinal chemistry have driven the evolution of lonis

antisense drugs
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PMTc-MAG3-SOD1 ASO SPECT imaging in humans shows ‘

robust ASO distribution up the neuraxis
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Jenna Sullivan et al, OTS 2021



RNA (% Vehicle)

ASQOs distribute throughout NHP CNS following intrathecal dosing

IT delivery in NHP of an ASO targeting the ubiquitously expressed long-non-coding

RNA MALAT1 (MALAT1) or vehicle (aCSF)
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ASOs are active in all major cell types in the CNS
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Transmission hypothesis of neurodegenerative diseases

Molecular hypothesis: Proteinaceous aggregates can induce pathology in healthy cells and propagate from
cell to cell, underlying disease progression (endogenous protein is required for propagation and toxicity)

Initial seed formation and Cell-to cell Disease propagation
template-dependent misfolding transmission through seeded nucleation

native

thological
pe o8 protein

form —

Hock and Polymenidou (2016)

Jucker and Walker. Nature (2013)
Therapeutic hypothesis: ASO-mediated substrate reduction should reduce pathological spread of protein

aggregates and benefit diseases



ASO-mediated Tau suppression can reverse Tau pathology (*=3
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Both Tau pathology and Tau dependent excitotoxicity contribute to
Alzheimer’s disease (AD)
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The major pathological hallmarks of AD are Tau neurofibrillary tangles and AB plaques
AP toxicity is dependent on Tau

Lowering Tau reverses Tau pathology and prevents spread

Lowering endogenous Tau protects against excitotoxicity



ASO-mediated Tau suppression prevents against

overactivation
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Design of first in human MAPT ASO clinical trial
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Durable reduction in CSF Tau levels in ASO treated patients [l(}
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Consistent reduction in Tau burden across all ﬁ?ﬁ
brain regions following MAPT ASO treatment

Phase 1b Tau PET Results
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CELIA Study (Biogen conducting): Clinialtrials.gov/NCT05399888 15
Edwards et al. JAMA Neurology 2023



https://clinicaltrials.gov/ct2/show/NCT05399888?term=CELIA&draw=2&rank=1

MAD + LTE tau PET results: MAPT ASO reduces Tau burden JlTP
at the end of the LTE following drug administration in all
treatment groups
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[*8F]-MK6240 standard uptake value ratios (SUVRs) were calculated with inferior cerebellum as the reference region. Adjusted mean change from MAD baseline based on ANCOVA
model with fixed effects of categorical treatment and baseline tau PET SUVR, Error bars reflect standard error of the mean

LTE = long term extension; MAD = multiple ascending dose; PET = positron emission tomography 16



Rationale for targeting PRNP for the treatment of prion disease

— Prion disease is a fatal dementia utatons ieenelie
caused by misfolding of prion
protein (PrP)

— PrP is the root cause of all forms
of prion disease

— An ASO targeting PRNP mRNA will
decrease prion protein levels and
has the potential to be beneficial in
all forms of prion disease Sporadic

(unknown origin)



Dose-dependent reversal of plasma NfL levels and extended survival =2
with ASO treatment initiated In late-stage disease in a prion mouse model
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Reversal of
PrP deposits
after

ASO treatment
INnitiated In
late-stage
disease model
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PI‘F— . An ongoing clinical trial of ION717 in people with prion disease! @s

« ION717: an investigational RNA-targeted therapy that is designed to reduce the production of prion
protein
« Trial Purpose: Phase 1/2a evaluation the safety, tolerability, pharmacokinetics and
pharmacodynamics of intrathecal (IT) delivery of ION717
« Study Design:
« Treatment period (30 wks): everyone receives ION717 and placebo; order of doses randomized
& blinded; multiple dose levels tested
 Open-label extension period (OLE; 70 wks): everyone receives ION717 (no placebo)
« Post-study period (32 wks): no ION717 or placebo
 Qutcomes measures:
 Primary: incidence of treatment-emergent adverse events (i.e., safety & tolerability)
« Secondary: change in the amount of ION717 (i.e., pharmacokinetics) as well as change in the
amount of prion protein (i.e., pharmacodynamics)
* Locations: 16 sites in 9 countries (USA, Australia, Canada, France, Germany, Israel, Italy, Japan,
Spain)

The safety and efficacy of ION717 has not been established. For more information speak with your doctor or visit clinicaltrials.gov

Sources: 1. Clinical Trial Page https://clinicaltrials.gov/study/NCT06153966 (Accessed August 29, 2024. 2. Qualitative caregiver interviews and PAG engagements, data on file



PrProrc : Timeline W

YOU
ARE - :
_ Approximately Approximately
HERE
December 2023 April 2024 August 2024 March 2025 October 2027
_PrProflle 1 Recruitment Recruitment resumes & Estimated primary Estimated study
recruitment starts. pause, per open-label extension : 1 .
) completion date. completion date?
protocol. ? period added.*?

 The estimated primary study completion date is when the last person enrolled In
PrProfile completes their final assessment for the primary outcome measure
 date Is subject to change
* Initial analysis of data in the months after this date; results shared with the
community when appropriate

« Study continues until October 2027 (projected). Data collected during the OLE will be
Important for understanding the safety and tolerability of ION717.

The safety and efficacy of ION717 has not been established. For more information speak with your doctor or visit clinicaltrials.gov

Sources: 1. Clinical Trial Page https://clinicaltrials.gov/study/NCT06153966 (Accessed August 29, 2024), 2. Community Statement, Apr 2024 3. Community Statement, Aug 2024



Conclusions

« ASO-mediated Tau suppression reverses aggregates after pathology is established
* MAPT ASO is in Phase Il clinical trials

« Rodent PRNP-targeted ASOs can suppress PRNP mRNA and pathology, and
extend survival in a dose responsive manner

* NfL Is reversed after ASO treatment in PRNP mouse model
* An ASO targeting human PRNP is in the clinic in a Phase I/ll study
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