Functional genomics of the prion life cycle

Adriano Aguzzi

University of Zurich

Adriano.Aguzzi@uzh.ch

(feel free to take pics, tweet & share as you see fit)§

Work performed by:

- Vangelis Bouris
- Davide Caredio
- Elena De Cecco
- Sebastian Hachenberg
- Tingting Liu
- Carlos Oueslati Morales
- Sandesh Neupane

Stefano Sellitto
Chiara Trevisan
Dalila Laura Vena
Hao Wang
Yancheng Wu
Jiang-An Yin

The rationale for unbiased genetic perturbations

- Therapy of neurodegeneration is held back by a dearth of actionable targets.
 - For prions, I see only PrP.
 - For AD, PD and ALS, I see ≤4 plausible targets each.
- For decades, neurodegeneration research has been hypothesis-driven. It's time to explore hypothesis-free approaches.
- Case in point: metabolic syndrome and alcohol addiction
 - 50 years of hypothesis-based lifestyle interventions haven't yielded much
 - GLP-1 agonists came out of serendipity, and are having a huge impact
- How can we speed up serendipity?

PrP^c transduces prion toxicity!!!

Selective vulnerability to prions of different cell types

transducers?

Tingting Liu Jiang-An Yin

Programmable gene activation by CRISPR-a

CRISPR-activation synthetic-lethal screen for transducers of prion toxicity

Ciliogenesis correlates with prion toxicity

Tingting Liu Jiang-An Yin

What is the primary cilium, and why is it there?

Daughter centriole

Validation in organotypic slice cultures (COCS)

Prion infection 8 wks

Normal morphology *Cerebellar granule cell degeneration*

Inhibition of ciliogenesis rescues prion-induced neurodegeneration ex vivo

HPI-4: Hedgehog antagonist inhibits ciliogenesis

Inhibition of ciliogenesis rescues prion-induced neurodegeneration ex vivo

Inhibition of ciliogenesis with Centrinone-B blocks prion toxicity

COCS at 55 days post culturing

Inhibition of HTR6 alleviates prion toxicity

DMSO SB258585 NeuN

Cultured organotypic cerebellum slice (COCS) 51 days post culturing; SB258585 : HTR6 specific inhibitor.

NBH

RML6

Inhibition of ciliogenesis targets prion-induced toxicity but does <u>not</u> reduce PK-resistant prion protein *in sectione*

Centrinone-B: ciliogenesis inhibitor targeting PLK4; Calb2: Granular cell marker; Cerebellum slices (Tga20, Prnp over-expressed strain) at 55 days post culturing

Next-generation arrayed libraries - why???

- 1. Pooled libraries are good for lethality screening, but inadequate for **biochemical, morphological** and **non-autonomous phenotypes**.
- 2. Single sgRNA efficacy is low, variable and unpredictable.
- 3. Most libraries disregard DNA polymorphisms among humans.

Arrayed libraries for indexed genome-wide CRISPRcut, CRISPRact and CRISPRoff screens

- PiggyBac transposon elements
- Puromycin and blue-fluorescent protein markers
- Designed to be tolerant to the most common human genetic polymorphisms.

APPEAL does not require agarose colony picking

19'820 CRISPRo plasmids (T.spiezzo)

22'326 CRISPRa plasmids (T.gonfio)

Jiang-An Yin et al. Nature Biomedical Engineering, 2024

High-throughput high-titer lentivirus production

Yin et al, 2024, Nat. Biomed. Eng.

4sgRNAs are better than 1 sgRNA

Glucocerebrosidase and Parkinson's disease

GBA mutations are the most common genetic risk factor for PD development (independent of GD)

Incomplete penetrance: not all *GBA* mutation carriers develop PD (\sim 10-30% by age 70)

→ Genetic modifiers most likely contribute to disease development and phenotype in GD and PD!

Kathi Ging, Jiang-An Yin et al.

npj Parkinsons Dis. **10**, 192 (2024) https://doi.org/10.1038/s41531-024-00819-7

A genome-wide arrayed activation screen for GBA modifiers

Excellent separation between negative and positive controls

Genome wide modifiers of GCase

Human chorionic gonadotropin (hCG) and PD

Optical CRISPR screen for modifiers of a-Synuclein aggregation

Sandesh Neupane, Dalila Vena, Elena De Cecco

Image Analysis Pipeline

Identification and quantification of cells positive for a-synuclein aggregates

- 1. Pixel classification and objects segmentation (nuclei and fibrils)
- 2. Secondary objects segmentation (cells)
- 3. Quantification of total cells
- 4. Quantification of cells that contain fibrils

Athena Economides

Q

Raw

 Ξ

173 lines (122 loc) · 5.85 KB

Preview Code

Blame

aSynAggreCount

A codebase for automated analysis of High Content Screens.

The input image-data are assumed to be generated from High Content Screen plates, with multiple fields of view acquired per well, and 3 channels recorded per field, corresponding to nuclei, cells, and aggregates. For a 384-well plate with 9 fields per well, 10'368 images are acquired in total per plate which are processed by the aSynAggreCount package to quantify aggregate-positive cells. For each image, aSynAggreCount performs image pre-processing to correct for the presence of uneven illumination and digitization noise, then performs segmentation of the structures of interest (nuclei, cells, aggregates), and finally applies colocalization analysis to characterize the presence of aggregates inside cells. An illustration of the image processing pipeline is shown below.

Athena Economidou https://github.com/aecon/AggreQuant

Genome-wide screen

Quality control: SSMD score

Plate number

For a Moderate Quality Types Control $\text{SSMD} = \frac{\bar{X}_P - \bar{X}_N}{\sqrt{s_P^2 + s_N^2}}$ $\hat{\beta} \leq -2$ Excellent $-2 < \hat{\beta} \leq -1$ Good $-1 < \hat{\beta} \le -0.5$ Inferior 11 Poor $\hat{\beta} > -0.5$

UPREGULATORS

CDH1	Cadherin 1			
C18orf54	Chromosome 18 Open Reading Frame 54			
TMEM101	Transmembrane Protein 101			
WDR66	Cilia And Flagella Associated Protein 2			
FOXA3	Forkhead Box A3			
DEFB105A	Defensin Beta 105A			
TRIM49	Tripartite Motif Containing 49			
ADPRHL1	ADP-Ribosylhydrolase Like 1			
ADRB1	Adrenoceptor Beta 1			
CHRM3	Cholinergic Receptor Muscarinic 3			
PIM3	Pim-3 Proto-Oncogene, Serine/Threonine Kinase			
RNF227	Ring Finger Protein 227			
HAPLN4	Hyaluronan And Proteoglycan Link Protein 4			
BCL2L13	BCL2 Like 13			
ANKRD61	Ankyrin Repeat Domain 61			
BCI 2I 2-PABPN1	BCI 2I 2-PABPN1 Readthrough			
AGT	Angiotensinogen			
ZDHHC3	Zinc Finger DHHC-Type Palmitoyltransferase 3			
TNFRSF19	TNF Receptor Superfamily Member 19			
LRRC8C	Leucine Rich Repeat Containing 8 VRAC Subunit C			
THNSL2	Threonine Synthase Like 2			
HEATR5A	HEAT Repeat Containing 5A			
FZD9	Frizzled Class Receptor 9			
FAM106B	Family With Sequence Similarity 106 Member B			
ITPRID1	ITPR Interacting Domain Containing 1			
MYORG	Myogenesis Regulating Glycosidase (Putative)			
ERICH2	Glutamate Rich 2			
AFF1	ALF Transcription Elongation Factor 1			
C17orf100	Chromosome 17 Open Reading Frame 100			
ZNF765	Zinc Finger Protein 765			
CFAP57	Cilia And Flagella Associated Protein 57			

DOWNREGULATORS

FERM, ARH/RhoGEF And Pleckstrin Domain Protein 1			
CD63 Molecule			
Salt Inducible Kinase 2			
G Protein-Coupled Receptor 50			
SLIT-ROBO Rho GTPase Activating Protein 1			
Carbonic Anhydrase 10			
Speedy/RINGO Cell Cycle Regulator Family Member E5			
MAGE Family Member D2			
Versican			
Pregnancy Specific Beta-1-Glycoprotein 6			
PTPRF Interacting Protein Alpha 2			
Putative Exonuclease GOR			
Rho GTPase Activating Protein 27			
Unc-119 Lipid Binding Chaperone B			
Seryl-TRNA Synthetase 2, Mitochondrial			
Kelch Like Family Member 32			
Phosphoinositide-3-Kinase Regulatory Subunit 3			
Collagen Type VI Alpha 2 Chain			
Solute Carrier Family 30 Member 2			
Chaperonin Containing TCP1 Subunit 4			
TIFA Inhibitor			
EEF1A Lysine Methyltransferase 1			
Eukaryotic Translation Initiation Factor 2 Alpha Kinase 1			

GWAS

ARHGAP27

Rho GTPase Activating Protein 27

"The encoded protein may play a role in <u>clathrin</u>-mediated endocytosis." "Increased expression of ARHGAP27 in the brain cortex was associated with decreased risk of PD"

GWAS PD (collection from several association studies MONDO_0005180)

SCREEN	\wedge ARHGAP27 \checkmark phospho-a-synuclein
GWAS	个 ARHGAP27 ↓ PD risk
LITERATURE	$\Lambda \alpha$ -synuclein Ψ <u>clathrin</u> -mediated endocytosis

"Acute introduction of α-synuclein impairs clathrin-mediated synaptic vesicle endocytosis"

Identification of genetic modulators of prion uptake via CRISPR screens

Elena De Cecco, PhD

University of Zurich

Can we identify genes that modulate prion uptake?

SHSY5Y dCas9-VP64

INTERNALIZATION CHECK

Sorting and visual inspection of sorted cells

Genome-wide screen - QC

Davide Caredio

Genome-wide CRISPRa screen

AN UNEXPECTED CANDIDATE: BRS-3

BRS3 is poorly characterized and not associated to neurodegeneration

Pathway analysis

BMP pathway identified in several databases

				explain column
	Reactome Pathways			
pathway	description	count in network	strength	false discovery rate
HSA-201451	Signaling by BMP	<u>7</u> of <u>27</u>	1.13	0.0066
	WikiPathways			
pathway	description	count in network	_ strength	false discovery rate
WP1425	Bone morphogenic protein signaling and regulation	<u>5</u> of <u>12</u>	1.33	0.0096
	Tissue expression (TISSUES)			
tissue	description	count in network	, strength	false discovery rate
BTO:0000202	Sense organ	45 of 1124	0.32	0.0125

Bone Morphogenetic Protein Signalling Pathway

BMP pathway – identified hits

7			
GENE	SCORE	FUNCTION	
BMPR1B	UP (21.5)	Receptor (S/T kinase)	Form heterotetramers
BMPR2	UP (36)	Receptor (S/T kinase)	
BMP7	DOWN (47)	Secreted ligand	
SMAD1	UP (25)	Transcription factor	Effector SMADs
SMAD5	UP (20.6)	Transcription factor	
SMAD6	DOWN (46)	Transcription factor	
RUNX2	DOWN (37)	Transcription factor	Inhibitory SMAD
RGMA	UP (31)	GPI protein	
АМН	DOWN (31.3)	Secreted ligand	
ACVRL1	UP (45.6)	Receptor (S/T kinase)	
LRIG1	UP (38.7)	EGFR regulator (inhibitor)	
LRIG2	DOWN (38.7)	EGFR regulator (activator)	Similar function
LRIG3	UP (28)	EGFR regulator (inhibitor)	Opposite function

-

Their partners: the LRIG brothers

GENE	SCORE	FUNCTION
LRIG1	UP (38.7)	EGFR regulator (inhibitor)
LRIG2	DOWN (38.7)	EGFR regulator (activator)
LRIG3	UP (28)	EGFR regulator (inhibitor)

LRIG proteins regulate lipid metabolism via BMP signaling and affect the risk of type 2 diabetes

<u>Carl Herdenberg</u>, <u>Pascal M. Mutie</u>, <u>Ola Billing</u>, <u>Ahmad Abdullah</u>, <u>Rona J. Strawbridge</u>, <u>Ingrid Dahlman</u>, <u>Simon Tuck</u>, <u>Camilla Holmlund</u>, <u>Peter Arner</u>, <u>Roger Henriksson</u>, <u>Paul W. Franks & Håkan Hedman</u>

LRIG-KO mice are deficient in BMP signalling Phenotype is rescued by overexpression of LRIG1 and LRIG3, but not LRIG2

Whole Genome-Wide Arrayed CRISPRa Screen to identify genetic modulators of PrP^C expression

Chiara Trevisan, Hao Wang

Selection of candidate genes: normalization by the median of the genes

Cut-off criteria: p-value < 0.05 Fold change: < 0.5 or >2 (= $\log_2 FC < -1$ or >1)

80 Upregulators

451 Downregulators

log₂ fold change

Physical location of PrP^C upregulators

TR-FRET to reproduce the results and exclude false positive 4 replicates per gene

Cut-off criteria: p-value <0.05 Fold change: <0.5 or >2 (= $\log_2 FC < -1$ or >1)

Transcriptional vs. post-transcriptional modifiers

Hit validation of PrP^C upregulators by Western blotting

Hit validation of PrP^C downregulators by flow cytometry

Some of the strongest downregulators of surface PrP^C are involved in lysosomal degradation

- LAPTM4B is a lysosomal protein that may mediate the transport of PrPC into lysosomes
- MAGI2 is involved in endocytosis and may perhaps mediate PrP^C endocytosis
- Bafilomycin inhibits lysosomal function and suppresses the effect of LAPTM4B, MAGI2 and ERICH1 activation

TFEB, a master regulator of lysosomal biogenesis and autophagy, showed up as a PrP^c downregulator.

Several genes involved in ECM breakdown downregulate PrP^C

When all you have is a CRISPR library...

....everything looks like a screenable phenotype

We are looking for partners! If you have an informative, screenable phenotype, and are willing to apply jointly for competitive funding, you know where I live.