

The regulatory role of PrP^c at glutamatergic synapses

Mahsa Pourhamzeh, Ph.D.

Sigurdson Laboratory Department of Pathology, School of Medicine University of California, San Diego

Mechanisms of Neurodegeneration in Human Prion Diseases and Their Intersection with AD/ADRD

November 12-14, 2024

Functions attributed to *PrP*^C

Phosphoproteomic analysis of *Prnp^{-/-}* (ZH3) and *Prnp^{WT}* cortex

2107 phosphopeptides detected

78 significantly different

- 65 upregulated phosphopeptides
- 12 downregulated phosphopeptides

83% of proteins were increased

Prnp^{-/-} mice showed enhanced phosphorylation of

- ✓ GluN2B (S929;S930)
- ✓ Glun2A (S1198,S1201)
- ✓ CaMKII-B

Gene ontology enrichment analysis of identified phosphoproteins

✓ Synapse✓ Glutamate receptor specific

Prnp^{-/-} vs. Prnp^{WT} cortex

Interaction network map of identified phosphoproteins

Core molecules within the network include:

- ✓ GluN2B (S929;S930)
- ✓ Glun2A S1198,S1201)
- ✓ CaMKII-B

The network displays only significant altered phosphopeptides, with disconnected nodes hidden for clarity. https://string-db.org/

Prnp^{-/-} mice showed increased CaMKII- α phosphorylation

Prnp^{-/-} mice showed increased phosphorylation of AMPA receptors

GluN2A and GluN2B levels were unaffected

Is PrP^C localized to the pre- or post-synapse?

PrP^c is localized to the post-synaptic density (PSD)

Synaptic PrP^C co-localizes with PSD-95

PrP-WT-mCherry, Cortical primary neurons

How does synaptic PrP^C affect synapse structure?

Gentry Patrick & Lara Dozier

Post-synaptic density (PSD) is longer in *Prnp^{-/-}* mice

How does synaptic PrP^c affect neuronal function?

Prnp^{-/-} neurons showed functional differences in neuronal activity, with increased AMPA/NMDA-evoked responses

AMPA/NMDA ratio

Suggests that magnitude of synaptic AMPA or NMDA receptor function is markedly altered by PrP^c deficiency

Electrophysiology experiments on organotypic brain slices from *Prnp^{-/-}* and *Prnp^{WT}* mice

Yixing Du & Kim Dore

Summary

Signaling model

PrP^c plays a role in intercellular signaling by regulating CaMKII pathway and modulating synaptic activity, which can affect synaptic plasticity and structural changes at glutamatergic synapses.

Acknowledgements

Sigurdson Lab

Christina Sigurdson Alexander Rajic Daniel Ojeda-Juárez Joshua E. Mayfield Amanda Wilpitz Emily Richards Paige Sumowski Samantha Flores Kika Funk Jin Wang Katrin Soldau Garrett Danque

UC San Diego

Kim Dore Yixing Du Gentry Patrick Lara Dozier

The Scripps Research Institute

John R Yates Daniel McClatchy

National Institutes of Health NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE