

Amyloid-beta spreading from the olfactory bulb

13.11.2024

Melanie Meyer-Luehmann

Alzheimer's disease – protein misfolding disease

Alzheimer's disease – Neuropathological hallmarks

• amyloid-β plaques

• neurofibrillary tangles

AD – a complex multicellular disease

Congdon and Sigurdsson, 2018

- microgliosis
- astrogliosis

Proposed spreading routes:

 \rightarrow Are microglia involved the spread of A β pathology?

A β plaque formation in cortical WT transplants

 \rightarrow Axonal transport is not involved in the spread of A β pathology in WT grafts

Role of microglia during A β plaque formation in WT transplants

Do microglia act as an A β carrier?

Microglia invasion into WT grafts

d'Errico P et al., Nat Neurosci 2022

 \rightarrow Do microglia act as an A β carrier?

Characterization of Irf8^{-/-} mice

 \rightarrow Irf8^{-/-} microglia are less ramified and display shorter, swollen processes

 \rightarrow Plaque load in Irf8^{-/-} x 5xFAD is similar

In vivo characterization of Irf8^{-/-} mice

 \rightarrow Reduced process motility and migration towards laser-induced injury

In vivo characterization of Irf8^{-/-} mice

Irf8+/-

Reduced Aβ plaque deposition in cortical WT transplants (1)

 \rightarrow Microglia migration deficit reduces A β deposits in WT grafts

Reduced A β plaque deposition in cortical WT transplants (2)

 \rightarrow Microglia depletion reduces A β deposits in WT grafts

Laser-induced injury leads to AB deposits in vicinity

Nucleation- dependent polymerization model

Induction of A β aggregation - seeding

Meyer-Luehmann M et al., Science 2006 Bachhuber T et al., Nat Med 2015 Ziegler-Waldkirch S et al., EMBO J 2018 Parhizkar S et al., Nat Neurosci 2019

Friesen M et al., Brain Pathol 2022 Ziegler-Waldkirch S et al., Mol Psychiatry 2022

Olfactory bulb

$A\beta$ seeding in the olfactory bulb

Ziegler-Waldkirch et al., MolPsychiatry 2022

Ziegler-Waldkirch et al., MolPsychiatry 2022

 \rightarrow Seeded 5xFAD mice have a significant deficit in simple olfaction tests

$A\beta$ seeding impairs adult neurogenesis

Ziegler-Waldkirch et al., MolPsychiatry 2022

Adult neurogenesis in the SVZ

- Neurogenesis occurs throughout life in restricted brain regions: SGZ of hippocampus and the SVZ of lateral ventricles
- Neural stem cells start to proliferate and differentiate in the SVZ
- Neuroblasts migrate from the SVZ in the RMS towards the olfactory bulb and mature to neurons.

Aβ spreads via the rostral migratory stream (RMS)

 The **RMS** is the major pathway by which neuroblasts migrate from the SVZ to the OB troughout adulthood

A β spreads via the rostral migratory stream (RMS)

Olf. area

hom.

hom

Aβ spreads via the rostral migratory stream (RMS)

Bidirectional dissemination of A β seeds after injection into the RMS

A β spreads via the RMS – role for microglia?

Depletion of microglial cells

5xFAD

Modified aggregation pattern of seeded A β spread

→ Some spherical aggregates have a compact core and are positive for TR⁺ and ThioS⁺

A β spreads via the RMS in APP23 mice

Microglia depletion in APP23 mice

 \rightarrow Microglia depletion has no effect on A β load in brain regions near the injection site

Summary II

1. RMS is a possible spreading route towards the lateral ventricle.

2. Microglia depletion affects Aβ aggregation/compaction in the olfactory area in 5xFAD mice.

 Microglia might be involved in the spreading of Aβ to more distant regions from the injection site in APP23 mice.

Acknowledgements

AG Meyer-Luehmann

Members: Hanna Küpper Iris Früholz Leoni Ottma

Dr. Paolo d'Errico Dr. Stephanie Ziegler-Waldkirch Dr. Marina Friesen Dr. Vanessa Aires Mofreita

Dr. Jeannine Boudier Katja Malfertheiner Charlotte Oldenburg

Collaborators:

Prof. Marco Prinz, University of Freiburg Prof. Marlene Bartos, University of Freiburg Prof. Andreas Vlachos, University of Freiburg Prof. Christian Haass, LMU Munich and DZNE

Center for Basics in NeuroModulation

UNIVERSITATS

KLINIKUM FREIBUR

Induction of Aβ aggregation *in vivo* (seeding) HC and bulbes Stephi

Possible spreading mechanisms

 \rightarrow A β deposition occurs in a stereotypical spatiotemporal distribution

Proposed spreading routes:

\rightarrow What are the mechanisms underlying the spread of A β pathology?

Nucleation- dependent polymerization model

Reduced A β plaque deposition in cortical WT transplants (1)

 \rightarrow Less A β uptake by microglia reduces A β deposits in WT grafts

Aβ seeds spread via the rostral migratory stream (RMS)

- Neurogenesis occurs throughout life in restricted brain regions: SGZ of hippocampus and the SVZ of lateral ventricles
- The RMS is the major pathway by which neuroblasts migration from the SVZ to the OB troughout adulthood

