

ALVINE 7

CJD Foundation, Washington DC, November 13, 2024

THE A β OLIGOMER A β *56 APPEARS TO ASSEMBLE INTO HOLLOW SPHEROID STRUCTURES

Karen Hsiao Ashe, Professor of Neurology

Grossman Center for Memory Research and Care University of Minnesota Medical School

GSS is Horizontally and Vertically Transmitted

Hsiao et al (1990) Science

Hsiao et al (1994) *PNAS* Telling et al (1996) *Genes & Development*

Can Illness Occur in the Absence of Amyloid?

A curious dissociation between amyloid and illness

Hsiao et al (1994) PNAS

Aβ*56 Correlates with Aging or Memory Loss in Studies from Several Independent Labs

Humans

- Yoo et al (Moon), Sci Reports, 2020
- Lapcinski et al (Liu), in prep*
- Mice
 - [Lesné et al (Ashe), Nature, 2006*]
 - Billings et al (LaFerla), J Nsci, 2007
 - Cheng et al (Mucke), JBC, 2007*
 - Meilandt et al (Mucke), J Nsci, 2009*
 - Liu et al (Pasinetti), J Nsci, 2008*
 - Castillo-Carranza et al (Kayed), J Nsci, 2015*
 - Liu et al (Ashe), Cell Reports, 2015*
 - Liu et al (Liu), iScience, 2024
- Dogs
 - Pop et al (Cotman), Neurobiol Aging, 2012

Outline

- 1. A β *56's relationship to cognition in humans
- 2. Biochemical characteristics of human A β *56
- 3. Isolation of $A\beta$ *56
- 4. Low resolution structure of $A\beta$ *56

 Aβ*56's Relationship to Cognition in Humans

Natural History of Alzheimer's Dementia

Amyloid Plaques Appear before Cognitive Impairment

Aβ*56 is 2-4 Times Higher in AD Independently of Plaque Load

lan Lapcinski Peng Liu Ashley Petersen

Aβ*56 is 2-4 Times Higher in AD Independently of Plaque Load

lan Lapcinski Peng Liu Ashley Petersen

Aβ*56 Correlates Inversely with Cognitive Measures

lan Lapcinski Peng Liu Ashley Petersen

2. Biochemical Characteristics of Aβ*56

Human and Mouse Aβ*56 Contains Canonical Aβ and Migrates at ~56 kDa under Denaturing and Non-denaturing Conditions

Human and Mouse Aβ*56 Contains Canonical Aβ and Migrates at ~56 kDa under Denaturing and Non-denaturing Conditions

Human Aβ*56 Binds A11 Antibodies

Toxic Aggregates with Out-of-Register β-Sheets Bind A11 Antibodies

Liu et al (Eisenberg) "Out-of-register beta-sheets suggest a pathway to toxic amyloid aggregates" PNAS 2012

3. Isolation of $A\beta$ *56

Isolation of Aβ*56

Isolation of Aβ*56

Isolation of Aβ*56

Aβ*56 Impairs Memory Function

Liu et al iScience (2024)

4. Structure of $A\beta$ *56

Transmission Electron Micrograph of Aβ*56 from Pre-plaque Tg2576 Mouse

Peng Liu Hanseung Lee

2D Classification

890 particles selected

David Boyer

Ab initio 3D Classification

"... a program used by CryoEM software to convert 2D classes to an initial guess of the 3D map. It requires no prior knowledge." David Boyer

Estimated Mass

"mers" refers to units of $A\beta$ *56

Summary

Aβ*56 correlates with memory impairment independently of amyloid plaques in humans

Aβ*56 can be reliably and reproducibly isolated using a procedure involving 4 purification steps: SEC, IAP, SDS-PAGE, Electro-elution

Ab initio modeling classified Aβ*56 particles into four groups of 3D structures resembling hollow spheres

Future Studies

We currently lack high-resolution structures of $A\beta$ oligomers that do not contain in-register beta sheets.

High-resolution structures of A β *56 could reveal the biophysical basis by which the arrangement of A β in an A β oligomer evades forming fibrils.

Targeting non-fibrillar A β oligomers such as A β *56 could lead to new, complementary A β therapies that augment the effects of existing anti-A β therapies.

Thank you!

University of Minnesota

Peng Liu Ian Lapcinski Hanseung Lee

Ashley Petersen

University of California Los Angeles

> David Eisenberg David Boyer

Lisa Kemper Chris Hlynialuk Beth Steuer Tommy Loude Jr MetLife Award (2005) Royalties Tg2576 mice Gift (Liu) To receive a 39-page protocol for the detection and purification of Aβ*56, please write to: liuxx726@umn.edu

bio RENDER

This presentation was created in BioRender

To access the original source of this presentation, visit:

https://app.biorender.com/illustrations/672672f37fa532fd2886c716

Sign up for your own BioRender account at www.biorender.com

Get the BioRender Add-in for PowerPoint

Our integration allows you to unlock the power of BioRender, right inside PowerPoint:

- Export your BioRender presentation as an editable .PPTX file.
- Edit BioRender figures without leaving your PowerPoint slides.
- Sync updates from BioRender with just one click.
- Effortlessly manage sharing and permissions with your team.
- Access your entire BioRender library at your fingertips.
- Need a transparent background? Toggle it on or off, anytime.

BioRender for PowerPoint is hosted safely and securely in the Microsoft AppSource.

Get the add-in now:

https://appsource.microsoft.com/enus/product/office/wa200006038?src=product&mktc mpid=pptx_export

3D Classification

Size-distribution of Particles

Source TEMs for 2D and 3D Classification

Analyzed Particles

1109 particles

David Boyer

3D Classification

Particles: 64 Threshold: 1.07-1.3 Vol: 99-187 nm3 Est. Mass: 80-152 kDa Particles: 70 Threshold: 0.866-1.02 Vol.: 269-342 nm3 Est. Mass: 171-277 kDa Particles: 230 Threshold: 0.579-0.808 Vol: 458-670 nm3 Est. Mass: 371-543 kDa Particles: 470 Threshold: 0.536-0.833 Vol: 690-1270 madd Boyer Est. Mass: 558-1028 kDa