

Conference: Mechanisms of Neurodegeneration in Human Prion Diseases and Their Intersection with AD/ADRD

November 12 - 14, 2024

Bethesda Marriott 5151 Pooks Hill Road Bethesda, MD 20814

11:00 am - 12:00 pm: Neuropathologic overlap of prion diseases and ADRDs: Potential for cross-seeding

- Moderator: Gabor G. Kovacs MD, PhD, Professor, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Bernardino Ghetti, MD, Distinguished Professor, Indiana University School of Medicine, Indianapolis, IN
- Rodrigo Morales, PhD, Professor, The George and Cynthia W Mitchell Center for Alzheimer's Disease and Other Brain Related Illnesses, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX

Conference: Mechanisms of Neurodegeneration in Human Prion Diseases and Their Intersection with AD/ADRD

November 12 - 14, 2024

Bethesda Marriott 5151 Pooks Hill Road Bethesda, MD 20814

GABOR G. KOVACS MD PhD FRCPC

Professor of Neuropathology and Neurology, Department of Laboratory Medicine and Pathobiology and Department of Medicine/Neurology, University of Toronto;

Consultant Neuropathologist, Laboratory Medicine Program, University Health Network;

Principal Investigator, UofT Tanz Centre for Research in Neurodegenerative Disease (CRND), Krembil Brain Institute;

Faculty/Neurologist, Edmond J. Safra Program in Parkinson's Disease and Co-Director Rossy Program for PSP research

Protein misfolding diseases

The Canadian Journal of Neurological Sciences (2022), 1–17 doi:10.1017/cjn.2022.34

Review Article

Current Concepts of Mixed Pathologies in Neurodegenerative Diseases

Shelley L. Forrest¹ and Gabor G. Kovacs^{2,3,4} ()

Kovacs GG, Ferrer I. Introduction Greenfield's Neuropathology 2024

multiple <u>neurodegenerative</u> proteinopathies

or

<u>neurodegenerative</u> pathologies <u>and another type</u> of pathology (e.g.,cerebrovascular disease) 'mixed pathology'

34

Mixed pathologies of the ageing and neurodegenerating brain

Lauren Walker and Johannes Attems

Acta Neuropathol (2013) 126:365–384 DOI 10.1007/s00401-013-1157-y

ORIGINAL PAPER

Non-Alzheimer neurodegenerative pathologies and their combinations are more frequent than commonly believed in the elderly brain: a community-based autopsy series

Gabor G. Kovacs · Ivan Milenkovic · Adelheid Wöhrer · Romana Höftberger · Ellen Gelpi · Christine Haberler · Selma Hönigschnabl · Angelika Reiner-Concin · Harald Heinzl · Susanne Jungwirth · Wolfgang Krampla · Peter Fischer · Herbert Budka

The possible number of combinations is very high

 The more advanced the Alzheimer's disease pathology is, the more chance that there are further neurodegenerative pathologies in the brain

These studies used immunostainings also...

Table 1 Overview of the community-based studies discussed in the present review

Study	Country
Rush Memory and Aging Project	USA
Religious Orders Study	USA
Medical Research Council Cognitive Function and Ageing Study	UK
Cambridge City Over-75 s Cohort	UK
Vantaa 85+	Finland
Hisayama	Japan
Honolulu–Asia Aging Study	USA
Adult Changes in Thought	USA
Baltimore Longitudinal Study of Ageing	USA
Oregon Brain Aging Study	USA
90+ Study	USA
Vienna Trans-Danube Aging study	Austria

OVERLAPPING PROTEINOPATHIES: BRIEF OVERVIEW OF THE LITERATURE

Studies use different methodologies

Table 2 Summary of methodological approaches used in the community-based neuropathological studies summarized in this review

Study	n	n Neuropathological criteria						Tau	α-Syn	Ubi/p62	TDP-43	Vascular pathologies	HS	
		BB	С	NR	NA	DLB/Br								
MAP [27,30-33]	425	+	+	+		+ ^a	+	+	+			+	+	
ROS [27,30,32-35]	539	+	+	+		+ ^a	+	+	+		+ ^b	+	+	
MRC CFAS [21,36-39]	525	+	+			+ ^{a,c}	+	+	+	+		+	+	
CC75C + [40]	224	+	+			+ ^a	+	+	+	+		+	+	
Vantaa 85 + ^d [41-43]	304	+	+			+ ^a	+	+	+	+		+	+	
Hisayama [44,45]	205	+		+		+ ^e		+	+	+		+		
HAAS [46-48]	439	+	+			+ ^e			+	+		+	+	
ACT [49,50]	438	+	+	+		+ ^e			+			+	+	
BALS [51,52]	209	+	+			+ ^e			+			+		
OBAS ^d [53,54]	125	+	+	+		+ ^e		+	+			+	+	
90+ Study ^d [55]	108	+	+			+ ^e	+	+	+		+	+	+	
VITA [5]	233	+	+	+	+	+ ^c	+	+	+	+	+	+	+	

Aβ, amyloid beta; ACT, Adult Changes in Thought; α-Syn, α-synuclein; BALS, Baltimore Longitudinal Study of Ageing; BB, Braak and Braak staging for Alzheimer's disease; Br, Braak; C, Consortium to Establish a Registry for AD criteria; CC75C, Cambridge City Over-75 s Cohort; DLB, McKeith criteria for dementia with Lewy bodies; HAAS, Honolulu–Asia Aging Study; HS, hippocampal sclerosis; MAP, Rush Memory and Aging Project; MRC CFAS, Medical Research Council Cognitive Function and Ageing Study; *n*, number of individuals included in the studies; NA, National Institute on Aging–Alzheimer's Association criteria; NR, National Institute on Aging–Reagan criteria; OBAS, Oregon Brain Aging Study; ROS, Religious Orders Study; TDP-43,Tar-DNA binding protein 43; Ubi, ubiquitin; VITA, Vienna Trans-Danube Aging study. ^aDLB criteria 1996. ^bNot assessed in all participants. ^cBraak staging for Parkinson's disease. ^dAge of autopsied cohort >90 years. ^eDLB criteria 2005.

REVIEW

Prevalence of mixed pathologies in the aging brain

Jasmin Rahimi and Gabor G Kovacs^{*}

Table 3 Frequency of different neuropathological variables in community-based studies

Study	Alzheimer's dis	ease-related	pathologies	α-Syn	TDP-43	HS	Vascular pathologies	Mixed pathology
	Braak III to VI	CERAD	NIA					
MAP [27,30]			59% (195)	15% (195)		13% (100)	46% ^a (195)	23% (195)
ROS [27,30,35]			61% (386)	21% (386)	46% (130)	13% (100)	49% ^a (386)	28% (386)
MRC CFAS [21,37]	52% (456)	46% (456)		39% (29% amygdala) (208)			70% ^b (456)	
CC75C [40]	39% ^c (213)	28% (213)		15% (213)			56% ^d (213)	
Vantaa 85+ [41-43]	70% (304)	66% (180)	41% ^e (180)	36% (304)		5% (132)	55% ^a (132)	40% (132)
Hisayama ^f [44,45]			62% (205)	29% (205)			31% (29)	10% ^g (29)
HAAS [48]			19% ^h (363)	10% ^f (363)		9% ^f (363)	28% ^d (363)	39.5% (363)
ACT [49]	62% (438)	47% (438)		14% (438)			35% ^d (438)	
BALS [51,52]			56% ⁱ (209)	6% ^f (34)			44% ^a (179)	
OBAS [53]	62% (71)	44% (71)		20% (71)		7% (71)	46% ^d (71)	
90+ Study [55]			67% (108)	6% ^j (108)	31% (108)	29% ^f (66)		19% ^k (108)
VITA [5]	38% (233)	35% (233)		25% (17.2% amygdala) (233)	13% (233)	3% (233)	49% ^I (233)	74% (233)

Review Article

Current Concepts of Mixed Pathologies in Neurodegenerative Diseases

Shelley L. Forrest¹ and Gabor G. Kovacs^{2,3,4} (9)

Table 3: Prevalence (%) of mixed pathologies in community-based, longitudinal ageing studies and major neurodegenerative diseases

					Tau		TDP-43	a-synuclein			
Cohort	Type of pathology	AD-related	Αβ	NFT only/PART	ARTAG	AGD	LATE-NC/other	LB pathology	HS	CVD	Ref
Community-based, longitudinal	± cognitive impairment	19-68	≤100	≤100	38	13	13-75	6-39	5-29	31-70	16,52,62,75
Major proteinopathies reported in various studies	AD	100	100	-	63	23-58	8-74	42-55	3-15	86	42,76,104,126
	FTLD-tau										
	PiD	15	20	-	77	n/d	0	7-13	n/d	n/d	42,96
	CBD	11	41	-	100	100	15-45	10-13	n/d	n/d	42,93,95,127,128
	PSP	26	57	-	99	18-80	6-16	6-22	n/d	n/d	42,96,129-131
	GGT	2	n/d	-	n/d	n/d	7	5	1	n/d	132
	FTLD-TDP	5	42	50	n/d	7	n/d	6-15	n/d	n/d	42.96.133
	MND	5	36	45	41	37	n/d	6-11	n/d	n/d	42,57,106,134
	LBD ¹	$10 - 100^2$	50-100 ³	16-63	564	10-25	2-52	n/d	n/d	38	42,57,126,135
	MSA	8	38	40	43	n/d	4-7	10	n/d	n/d	42,136,137
	CID	38-50	n/d	69	15	6-8	rare	9-23	n/d	n/d	138-141

Are comorbidities compatible with a molecular pathological classification of neurodegenerative diseases?

Gabor G. Kovacs

Table 1. Overview of combined proteinopathies associated with representative genetic disorders

		Ταυ										α -S	yn	TDP-43		Αβ	
Gene	Major protein	ARTAG	PART	AGD	PSP	CBD	GGT	Pick	NFTs/ other	Only biochemical	Lewy body	MSA/ GCI	Only biochemical	NCI/ NNI	Only biochemical	Plaques	Only biochemical
APP	Αβ	_	_	_	—	—	_	_	+	_	+	—	_	_	_	+	_
PSEN 1	Αβ	—	_	_	_	_	_	+	+	—	+	_	_	+	_	+	_
PSEN2	Αβ	_	_	_	_	_	_	_	+	—	+	_	_	+	_	+	_
PRNP	Prion protein	+	+	+	+	_	_	_	+	_	+	_	_	_	_	+	_
TARDBP	TDP-43	+	_	_	_	_	_	_	+	_	_	_	_	+	_	_	_
GRN	TDP-43	+	+	_	_	_	_	_	+	_	+	_	_	+	_	+	_
C9orf72	TDP-43 /DPR	$+^{a}$	+	_	_	$+^{a}$	_	_	+	_	+	_	_	+	_	+	_
MAPT	Ταυ	+	+	+	+	+	+	+	+	_	_	_	_	+	_	_	_
HTT	Huntingtin	+	+	_	_	—	—	_	+	+	_	_	+	+	+	+	+
LRRK2	lphaSyn	_	+	_	+	_	_	_	+	_	+	+	_	+	_	+	_
SNCA	lphaSyn	_	+	_	—	_	_	—	+	_	+	+	_	+	_	_	_

PATHOGENESIS

- **1. Ageing as a risk factor**
- 2. Direct and synergistic interactions (i.e., cross-seeding) of proteins
- 3. A pathogenic event is capable inducing aggregation of different proteins, which suggests common pathways
- 4. As a provocative concept, combined proteinopathies might represent distinct "strain-like" features

For cross-seeding it is important that protein pathologies overlap (can meet!) in brain regions....

AMYGDALA AS HOTSPOT

Neurodegenerative Diseases

Peter T. Nelson, MD, PhD, Erin L. Abner, PhD, MPH, Ela Patel, Sonya Anderson, BA, Donna M. Wilcock, PhD, Richard J. Kryscio, PhD, Linda J. Van Eldik, PhD, Gregory A. Jicha, MD, PhD, Zsombor Gal, Ruth S. Nelson, Bela G. Nelson, Jozsef Gal, PhD. Md. Tofial Azam, MS, David W. Fardo, PhD, and Matthew D. Cykowski, MD

BRAIN COMMUNICATIONS

https://doi.org/10.1093/braincomms/fcae141

Multiple system atrophy with amyloid-β-predominant Alzheimer's disease neuropathologic change

Tomoya Kon,^{1,2} Shojiro Ichimata,^{1,3} Daniel G. Di Luca,^{4,5} Ivan Martinez-Valbuena,¹ Ain Kim,¹ Koji Yoshida,^{1,3} Abdullah A. Alruwaita,^{6,7} Galit Kleiner,^{4,8} Antonio P. Strafella,^{4,6} Shelley L. Forrest,^{1,9,10} Christine Sato,¹ Ekaterina Rogaeva,¹ Susan H. Fox,⁶ Anthony E. Lang^{1,4,6} and ©Gabor G. Kovacs^{1,4,6,9,10,11}

BIOMARKER relevance

TAKE HOME MESSAGE

- Mixed pathology and Multimorbidity in individuals affected by neurodegenerative conditions is frequent (due to age) and includes systemic conditions with different pathogenesis than neurodegenerative diseases
- The most frequent additional proteinopathies are related to Alzheimer disease, Lewy body pathology, and limbic predominant TDP-43 proteinopathy
- The concept of comorbid proteinopathies has implications for biomarker and therapeutic development
- Ageing, synergistic interaction of proteins, common disease pathways and the influence of genetic variations are possible pathogenic players for comorbidity
- Concept of ,,lowering the threshold" for dementia

Dr. Bernardino Ghetti

Hereditary PrP Amyloidoses: Intersections and Overlaps

Dr. Rodrigo Morales

Cross-seeding of misfolded proteins: potential implications in disease

