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Prion diseases 

Protein Misfolding 

and aggregation

Misfolded Aggregates deposited in the brain

Alzheimer’s disease Parkinson’s disease

Huntington’s disease

Amyothropic lateral sclerosis
Soto (2003) Nature 

Rev Neurosci. 4:49-60



How is a Protein Infectious?: The Prion Principle 

The prion principle posits that pathological changes can spread faithfully 

between cells and self-perpetuate by the auto-catalytic propagation of 

misfolded protein aggregates 

This mechanism operates to transmit diseases in an infectious manner and 
to spread disease pathogenesis among cells and tissues during the 
progression of the disease. The prion principle may be at the root of some 
of the most prevalent and incurable diseases of our time, including 
Alzheimer’s, Parkinson’s diseases, diabetes and cancer. 



Mechanism of  protein misfolding

Soto, Estrada, Castilla 

(2006) TIBS 31: 150-155
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The seeding mechanism provides a molecular 
explanation for the prion principle of spreading of 

protein aggregates as infectious agents



Molecular basis of  the Prion principle
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The Prion Principle Operates at Different Levels

Moreno-Gonzalez and Soto (2011) 
Sem Dev Biol 22: 482-487



Implementation of a procedure to “cultivate” 

prions by mimicking in vivo prion replication with 

high efficiency in the test tube

Availability of such a technology will enable to study the 

biochemical characteristics of the infectious agent and the 

mechanism of prion propagation.

Reproducing the Prion Principle in vitro 



60 - 120 d

7 - 40 y

Clinical 

symptoms 
3 - 5 y

PrPC

Slow process

PrPSc

Infection Incubation Time
Disease

Prion replication during disease propagation



Normal 
protein

Incubation

Growing 
of units

Incubation

Growing 
of units

+

The Protein Misfolding Cyclic Amplification 

Technology
Oligomeric

Seeds

Soto et al. (2002) Trends Neurosci. 25:390-394

Fragmentation

Multiplication 
of units

Multiplication 
of units

Fragmentation



Application of  PMCA to understand prion biology



Sensitive detection of  prions by PMCA



Misfolded proteins in human brains

Amyloid-beta (Aβ)        Alzheimer’s disease

Tau         Alzheimer’s disease and other 
  tauopathies (FTD, PSP, CBD, CTE, Pick’s 

 disease)

α-synuclein       Parkinson’s disease and other 
  synucleinopathies (DLB, MSA, PDD)

TDP-43        Amyothrophic lateral sclerosis, fronto- 
  temporal dementia, limbic-predominant 

 age-related TDP-43 encephalopathy

In addition, other misfolded proteins are found in some rare diseases, 
such as PrP, huntingtin, SOD-1, ataxin, etc



Our strategy is to use the ability of misfolded oligomers to seed polymerization 

of monomeric protein to enable their high sensitivity detection.
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Our strategy for high sensitive detection



Seed Amplification Assay (aka PMCA or RT-QuIC)

Soto et al. (2024) Trends Biotech. 42(7):829-841





Current status of  αSyn-SAA in CSF samples

Parameter Value 95% confidence intervals

Sensitivity for PD 88.5% 79.2 – 94.6%

Sensitivity for DLB 100.0% 94.9-100.0%

Sensitivity for MSA 80% 79.5-94.6%

Specificity against disease 
controls

96.9% 89.3-99.6%

Specificity against controls and 
neurodegenerative diseases

94.0% 86.5-98.0%

Positive predictive value 94.7% 88.0-98.3%

Negative predictive value 87.6% 78.7-93.7%

Sensitivity, Specificity and predictive value for αSyn-PMCA in CSF samples

#

#

***

PD Controls



Groups Number of patients Sensitivity (95% CI)

All PD cases 558 87.8% (85.1 – 90.5)

Sporadic PD 374 93.3% (90.8 – 95.8)

LRRK2 PD 123 67.5% (59.2 – 75.8)

LRKK2 PD (hyposmics) 69 89.9% (82.7 – 97.0)

GBA PD 49 95.9% (90.4 – 100)

Specificity for healthy controls (N = 163) was 96.3% (93.4 – 99.2)

Large study of  αSyn-SAA accuracy in CSF



Preclinical detection of  αSyn aggregates

4.08 years 

1.67 years 

6.16 years 

5.58 years 

SAA+ before 
phenoconversion



Predicting prodromal phenoconversion to PD

Coughlin et al Neurology (In press)



Distinguishing PD and MSA by αSyn-SAA
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Healthy Controls

(n=56)
Multiple System Atrophy

(n=75)

Parkinson’s Disease

(n=94)

Shahnawaz et al. (2020) Nature 578:273-277

Comparison Sensitivity (%)

PD vs healthy controls 93.6

MSA vs healthy controls 84.6

PD vs MSA 95.4



Fast αSyn-SAA in CSF samples
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Tau-SAA in brain samples
AD brain homogenate Control brain homogenate



Tau-SAA in CSF samples



Tau-SAA in CSF in relation to brain AD pathology



Potential Applications of SAA technology
Patient diagnosis. To increase sensitivity of clinical diagnosis 

Identification of mixed pathology. To identify co-pathology and its contribution to disease.

Monitor disease progression. To measure the accumulation of aggregates over time and relate 
to brain damage and clinical phenotype. 

Differentiating conformational strains. To distinguish diseases produced by distinct 
conformational strains of the same protein (e.g. PD vs MSA).

Pre-clinical detection of disease pathogenesis. To detect the disease process early on, before 
substantial damage in the brain and clinical symptoms. 

Development of new therapeutics. To serve as a screening assay for drugs interfering with 
protein aggregation and spreading.

Patient enrollment in clinical trials. To help enrollment of the right patients for different trials.

End-point for clinical trials. To monitor the efficacy of drugs under development, especially 
those targeting protein aggregation.

Personalized medicine. To determine the type of proteinopathies present in distinct patients 
and help physicians to provide the best treatment available. 

Defining disease by underlying biology. To help to define disease by the type and extent of 
protein pathology rather than by clinical symptoms.
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