

α-Synuclein SAA: A highly specific marker for the early diagnosis and stratification of patients with synucleinopathies

"Protein aggregation seeding assays: From prions to other ADRD proteinopathies". - Bethesda, MD, November 2024

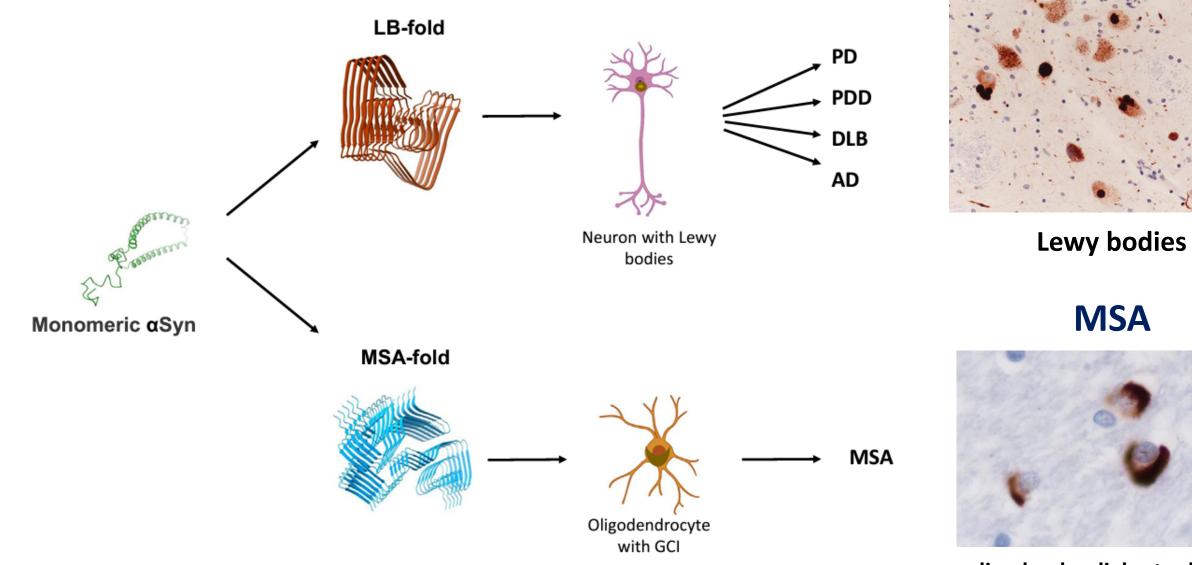
Piero Parchi MD, PhD

IRCCS Istituto delle Scienze Neurologiche di Bologna DIBINEM, University of Bologna, Italy

Presentation Outline

Summary of differences between α-Syn SAA protocols

✓ Focus on CSF results


- Performance in cohorts with neuropathologic assessment
- Performance in patients with clinical parkinsonism (PD, MSA, PSP)
- Performance in patients with prodromal Lewy body disease (isolated RBD)
- Performance in patients with cognitive decline with or without AD pathology
- Performance in "asymptomatic" aged individuals (with no cognitive or motor dysfunction)
- Progress towards the development of a "quantitative" α-Syn SAA

Two α-Synuclein(αSyn) conformational strains in synucleinopathies

PD-DLB

Schweighauser et al Nature 2020; Yang Y et al Nature 2022, Soto C, TIBTEC 2024

oligodendroglial cytoplasmic inclusions

α-Synuclein SAA protocols

Bargar et al. acta neuropathol commun (2021) 9:62 https://doi.org/10.1186/s40478-021-01175-w

Wen-Quan Zou^{1,2*}, Jiyan Ma^{6*} and Shu G. Chen^{1,2*}

Acta Neuropathologica Communications

Open Access

Streamlined alpha-synuclein RT-QuIC assay

- Rec. α -Syn from rPeptide (USA)
- CSF seeding activity detected in 30-40% of MSA cases

All reagents commercially available

- **Reagents from the Amprion Company**
- Seeding activity detected in 80-90% of MSA cases with a distinctive profile (lower signal than in LBD)
- Home made α -Syn from original Caughey's lab plasmid
- No seeding activity detected in MSA

Alison Green's Lab Fairfoul et al., 2016

Caludio Soto's Lab Shahnawaz et al., 2017

Byron Caughey's Lab 3. Groveman et al., 2018

SYNTap[®] Biomarker Test

for various biospecimens in Parkinson's disease

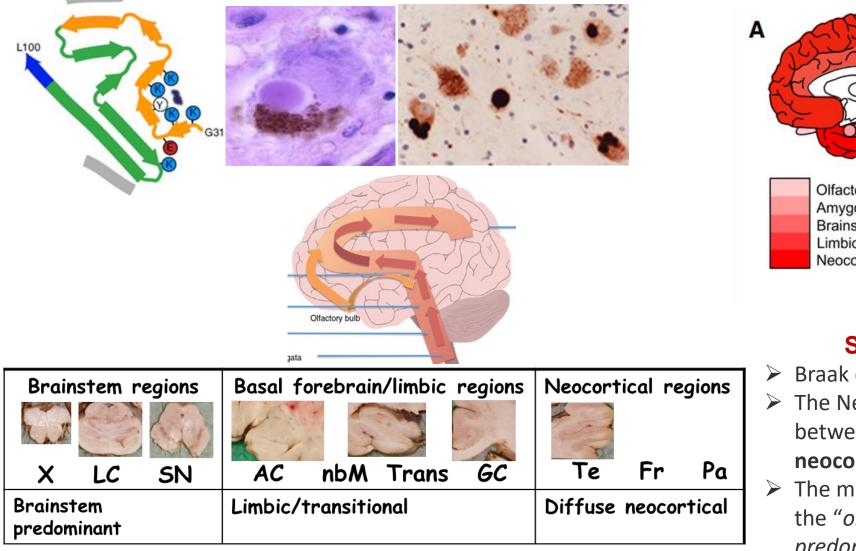
Connor Bargar¹, Wen Wang¹, Steven A. Gunzler², Alexandra LeFevre³, Zerui Wang¹, Alan J. Lerner²,

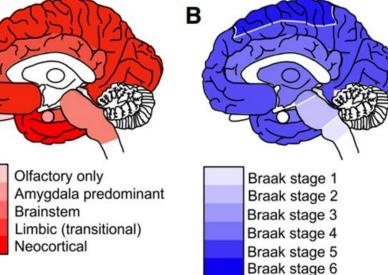
Neena Singh^{1,2}, Curtis Tatsuoka², Brian Appleby^{1,2}, Xiongwei Zhu^{1,2}, Rong Xu⁴, Vahram Haroutunian⁵,

and dementia with Lewy bodies

The SYNTap Test helps physicians diagnose synucleinopathies such as: Parkinson's, LBD, Alzheimer's with Lewy Bodies, MCI, and MSA.

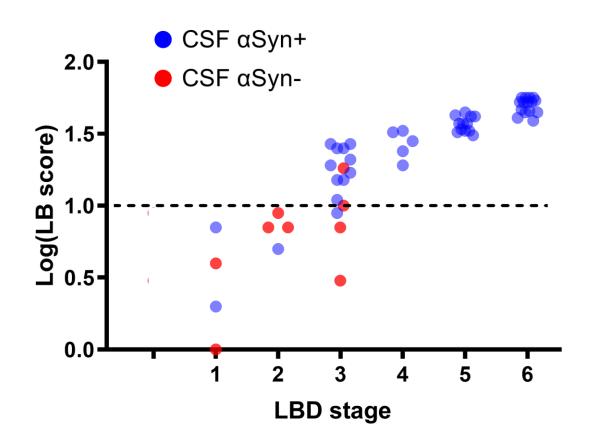
Original plasmid for home made rec- α -Syn production made available and distributed to several laboratories





Neuropathological staging of Lewy body disease

α-Synuclein


Staging of α-syn deposition

- Braak described six stages of LBP progression
- The Newcastle-McKeith criteria distinguishes between brainstem, limbic (transitional), and neocortical.
- The most recent consensus (2017) included the "olfactory only", and "amygdala predominant" stages

CSF α -Syn RT-QuIC performance in a large autopsy cohorts

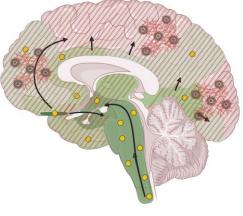
Studied cohort

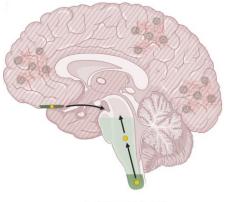
- ✓ CSF-brain pairs from 269 patients with rapidly progressive dementia (death less than 1 year after LP in most cases)
- ✓ 214 subjects lacking LB pathology (αSyn LB- group) and 55 with LB pathology (αSyn LB+ group)

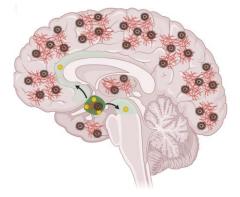
	Pos/n	Sensitivity	Specificity
LB- α-Syn +	46/55	83.6%*	
Neocortical	15/15	100%	
Limbic	17/17	100%	
Brainstem	14/23	61%	
Stage III	11/15	73%	
Stage II or I	3/8	38%	
LB- α-Syn -	3/214		98.6%

High sensitivity (91.5%) of α -Syn RT-QuIC in individuals with LB Braak stage \geq 3

Bentivenga et al. Acta Neuropathol 2024


Other studies in autopsy cohorts (cognitive decline)


Amprion protocol


(Arnold - Ann Neurol 2022, Samudra - Alz Dem 2024, Tosun - Alz Dem 2024):

- High sensitivity of the αSyn SAA in limbic and neocortical (n=77) LBD stages (92.2 %)
- ✓ Significantly decreased sensitivity (33.3%) is observed in the amygdala-predominant (n=45) and brainstem (n=9) LB pathology stages
- ✓ The combined specificity was 97.5 % (n=119)

NEOCORTICAL Braak stages 5 and 6

BRAINSTEM Braak stages 1 and 2

AMYGDALA-PREDOMINANT VARIANT

Acta Neuropathologica https://doi.org/10.1007/s00401-020-02160-8

ORIGINAL PAPER

Ultrasensitive RT-QuIC assay with high sensitivity and specificity for Lewy body-associated synucleinopathies

Marcello Rossi¹ · Niccolò Candelise² · Simone Baiardi^{1,3} · Sabina Capellari^{1,3} · Giulia Giannini³ · Christina D. Orrù⁴ · Elena Antelmi³ · Angela Mammana¹ · Andrew G. Hughson⁴ · Giovanna Calandra-Buonaura^{1,3} · Anna Ladogana⁵ · Giuseppe Plazzi^{1,3} · Pietro Cortelli^{1,3} · Byron Caughey⁴ · Piero Parchi^{1,2}

npj Parkinson's Disease

www.nature.com/npjparkd

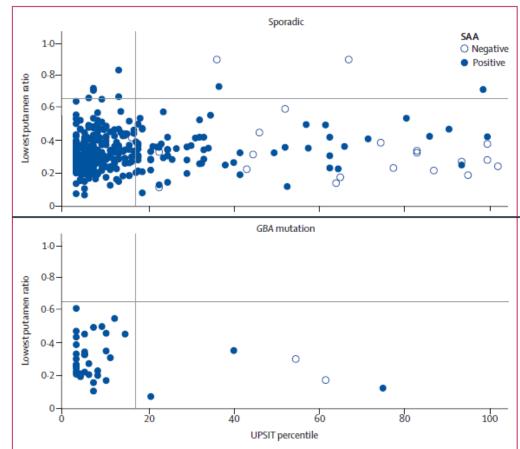
ARTICLE OPEN

Neurofilament light chain and α-synuclein RT-QuIC as differential diagnostic biomarkers in parkinsonisms and related syndromes

Corinne Quadalti ^(b), Giovanna Calandra-Buonaura^{1,2}, Simone Baiardi^{1,3}, Andrea Mastrangelo², Marcello Rossi¹, Corrado Zenesini¹, Giulia Giannini², Niccolò Candelise¹, Luisa Sambati², Barbara Polischi¹, Giuseppe Plazzi^{1,4}, Sabina Capellari^{1,2}, Pietro Cortelli^{1,2} and Piero Parchi ^(b), ^{3SI}

Diagnostic group	N° tot	N° of pos.	N° of neg.	Sensitivity	Specificity	100 - PD 80 - MSA
PD (ISNB cohort)	236	207	19	91.9%		- PSP/CBS
PD (Tuebingen cohort)*	208	183	25	88.8%*		₩ % 40-
PD (Biofinder cohort)	185	165	20	89.2%		20
MSA	108	5	103		95.4%	
PSP/CBS	88	2	86		97.8%	time (h)
Controls (Clinical)	130	4			97.0%	

Rossi et. al. Acta Neuropath 2020, Brockmann et al ANC 2021, Quadalti et al NPJ Parkinson 2021 and unpublished data



Siderowf et al LANCET NEUROL 2023 (PPMI cohort) Concha et al MOV DISORD 2023 (DeNoPa cohort)

Diagnostic group	N° tot	N° of pos.	N° of neg.	Sens.	Spec.
PD sporadic (PPMI)*	348	323	25	93.9%	
Olfactory deficit	278	274	4	98.6%	
NO olfactory deficit	69	57	12	78.3%	
PD (DeNoPa)*	95	91	4	95.8%	
Controls (Clinical)	163	7	156		96.3%

* Final diagnosis after up to 10 yrs of follow-up as gold standard

 The assay identify and classify people with PD early in the course with high sensitivity and specificity and also provides information about disease heterogeneity

Association between dopamine transporter binding, olfaction, and α-synuclein SAA results among PD patients (PPMI cohort)

CSFα-Syn SAA performance in iRBD

Detection of α -synuclein in CSF by RT-QuIC in patients with isolated rapid-eye-movement sleep behaviour disorder: a longitudinal observational study

Alex Iranzo, Graham Fairfoul, Anutra Chumbala Na Ayudhaya, Monica Serradell, Ellen Gelpi, Isabel Vilaseca, Raquel Sanchez-Valle, Carles Gaig, Joan Santamaria, Eduard Tolosa, Renata L Riha, Alison J E Green

RESEARCH ARTICLE

Misfolded α-Synuclein Assessment in the Skin and CSF by RT-QuIC in Isolated REM Sleep Behavior Disorder

Alex Iranzo, MD, PhD,* Angela Mammana, PhD, Amaia Muñoz-Lopetegi, MD, Sofia Dellavalle, MSc, Gerard Mayà, MD, PhD, Marcello Rossi, PhD, Monica Serradell, BSc, Simone Baiardi, MD, PhD, Aurora Arqueros, MSc, Corinne Quadalti, PhD, Andres Perissinotti, MD, PhD, Edoardo Ruggeri, MSc, Joan Santamaria Cano, MD PhD, Carles Gaig, MD, PhD, and Piero Parchi, MD, PhD.*

Correspondence Dr. Iranzo airanzo@clinic.cat or Prof. Parchi piero.parchi@unibo.it

 $\mathit{Neurology}^{\circledast}$ 2023;100:e1944-e1954. doi:10.1212/WNL.000000000207147

Assessment of heterogeneity among participants in the Parkinson's Progression Markers Initiative cohort using α-synuclein seed amplification: a cross-sectional study

Andrew Siderowf^{*}, Luis Concha-Marambio^{*}, David-Erick Lafontant, Carly M Farris, Yihua Ma, Paula A Urenia, Hieu Nguyen, Roy N Alcalay, Lana M Chahine, Tatiana Foroud, Douglas Galasko, Karl Kieburtz, Kalpana Merchant, Brit Mollenhauer, Kathleen L Poston, John Seibyl, Tanya Simuni, Caroline M Tanner, Daniel Weintraub, Aleksandar Videnovic, Seung Ho Choi, Ryan Kurth, Chelsea Caspell-Garcia, Christopher S Coffey, Mark Frasier, Luis M A Oliveira, Samantha J Hutten, Todd Sherer, Kenneth Marek, Claudio Soto, on behalf of the Parkinson's Progression Markers Initiative[†]

https://doi.org/10.1038/s41531-024-00770-7

CSF markers of neurodegeneration Alzheimer's and Lewy body pathology in isolated REM sleep behavior disorder

Check for updates

Amaia Muñoz-Lopetegi¹, Simone Baiardi²³, Mircea Balasa⁴, Angela Mammana², Gerard Mayà¹, Marcello Rossi², Mónica Serradell¹, Corrado Zenesini², Alice Ticca³, Joan Santamaria¹, Sofia Dellavalle², Carles Gaig¹, Alex Iranzo **©**¹ ⊠ & Piero Parchi **©**²³ ⊠

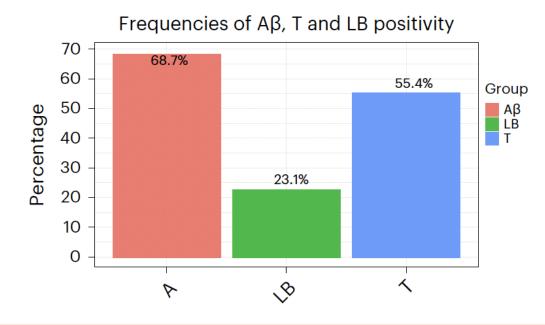
RESEARCH ARTICLE

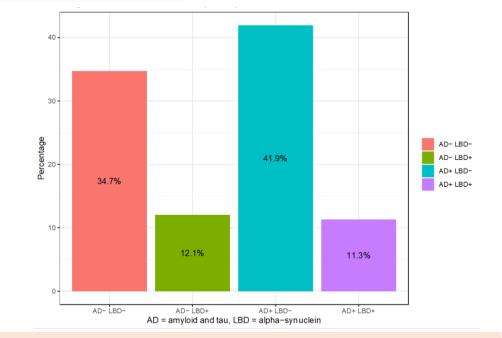
Accurate Detection of α -Synuclein Seeds in Cerebrospinal Fluid from Isolated Rapid Eye Movement Sleep Behavior Disorder and Patients with Parkinson's Disease in the DeNovo Parkinson (DeNoPa) Cohort

Luis Concha-Marambio, PhD,¹ Sandrina Weber, MD,²³ Carly M. Farris, MSc,¹ Mohammed Dakna, PhD,² Elisabeth Lang, BSc,³ Tamara Wicke, MSc,³ Yihua Ma, MSc,¹ Maritta Starke,³ Jens Ebentheuer, MD,³ Friederike Sixel-Döring, MD,³⁴ Maria-Lucia Muntean, MD,³ Sebastian Schade, MD,³ Claudia Trenkwalder, MD,³⁵ Claudio Soto, PhD,¹⁶ and Brit Mollenhauer, MD^{2,3*}

Study	N° of patients	N° of pos.	Sensitivity %
Rossi et al, ANP 2020*	18	18	100
Iranzo et al Lancet* Neurol 2022	52	47	90.0*
Iranzo et al Neurology 2023 Munoz-Lopetegi et al npj Parkinson 2024	142		75.6*
Siderowf et al Lancet Neurol 2023	33	28	84.8
Concha-Marambio et al Mov Disord 2023**	29	27	93.1
TOTAL	220	186	84.6

*Higher % of SAA positive patients explained by a higher frequency of MCI and other signs of prodromal PD


- * 96.7% sensitivity in 45 patients who convereted to PD or DLB
- ** Multiple samples analysed at baseline and follow-up

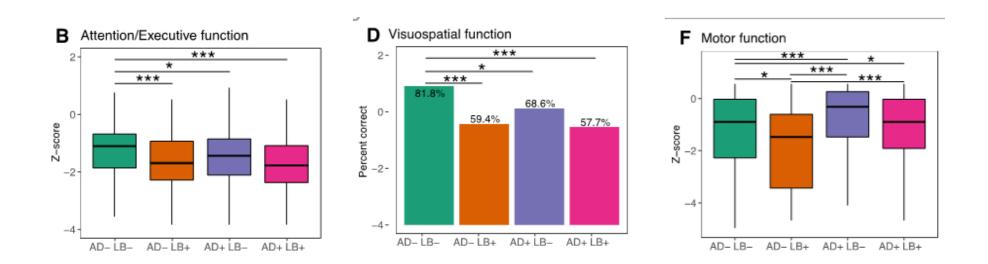


Prevalence of LB and AD pathology in cognitively impaired patients

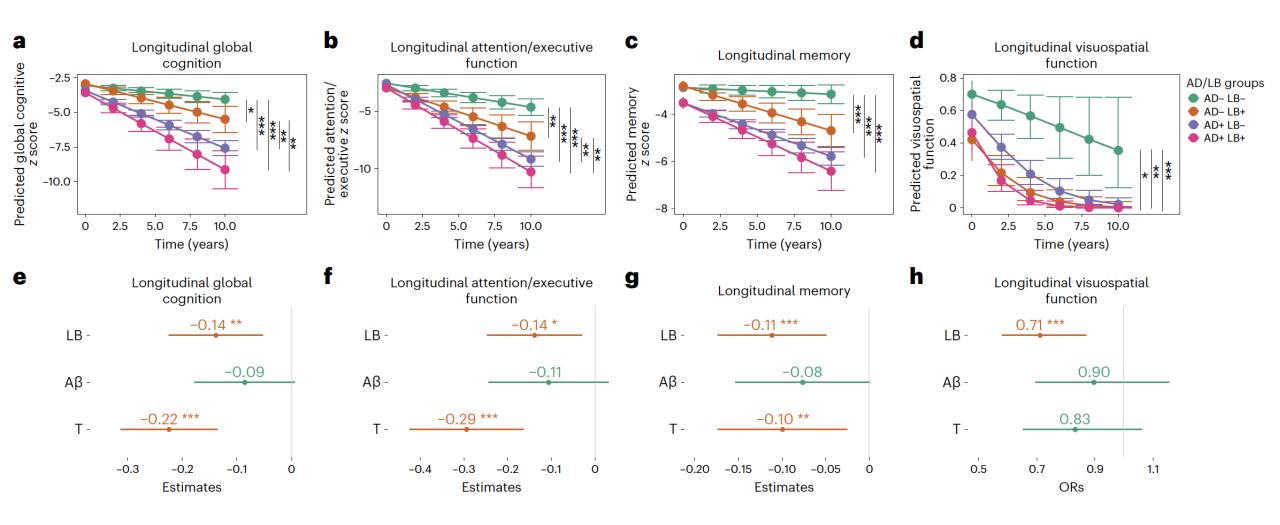
 $\alpha\mbox{-Syn}$ SAA analysed using CSF in 883 cognitively impaired BioFINDER partcipants

✓48% of LB+ patients had AD pathology

✓ Among patients with AD pathology, 17% of MCI and 24% of patients with dementia were LB+

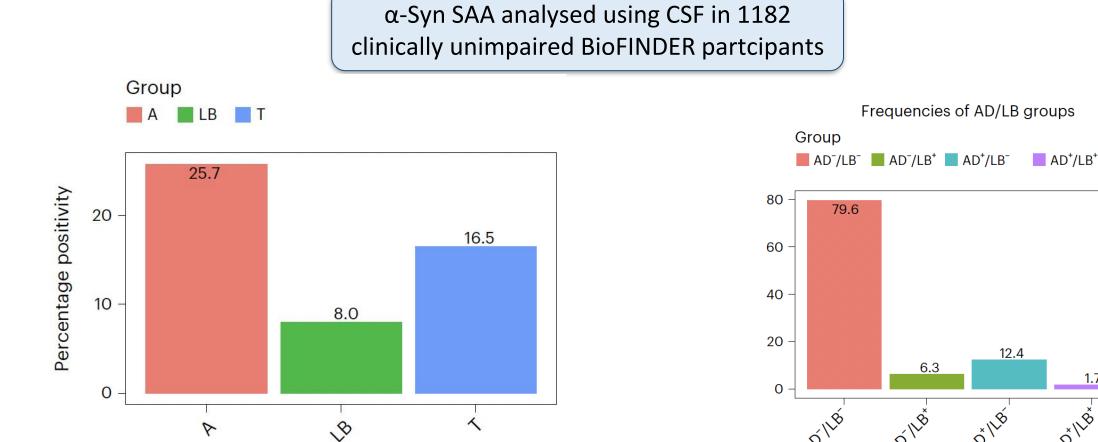

Only 1 of 5 (21%) of LB+ patients fulfilled clinical criteria of PD or DLB at baseline

Quadalti et al, Nature Medicine, 2023

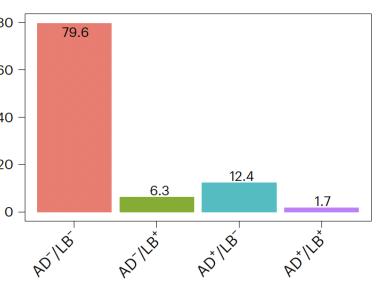


- LB pathology had AD-independent effects on:
 - Attention/executive function
 - Visuospatial function
 - Motor dysfunction (e.g. bradykinisia)

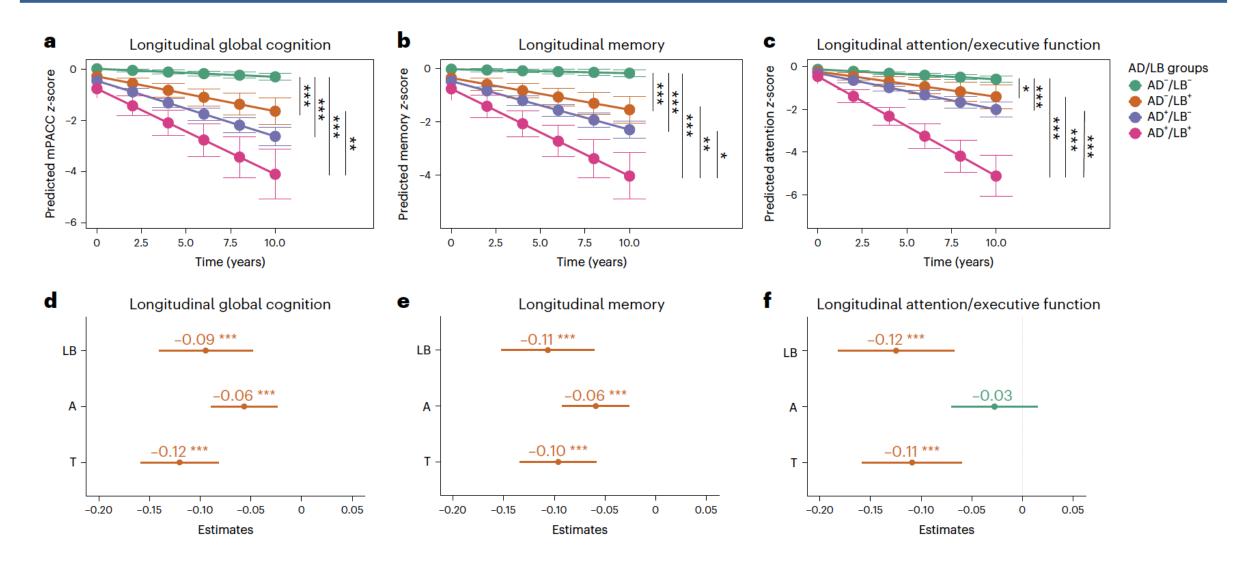
Longitudinal effects of LB pathology in clinically impaired individuals


Scienze Neurologiche di Bologna

IS

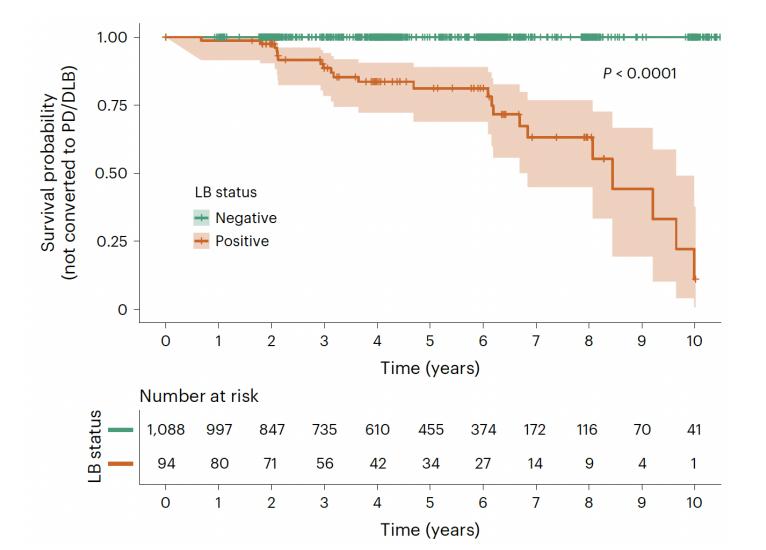


Prevalence of LB and AD pathology in cognitively and neurologically unimpaired individuals


LB positivity was significantly more likely to occur in the presence of A β positivity (OR 1.72) but not tau positivity

Palmqvist et al, Nature Medicine, 2023

Longitudinal effects of LB pathology in clinically unimpaired individuals

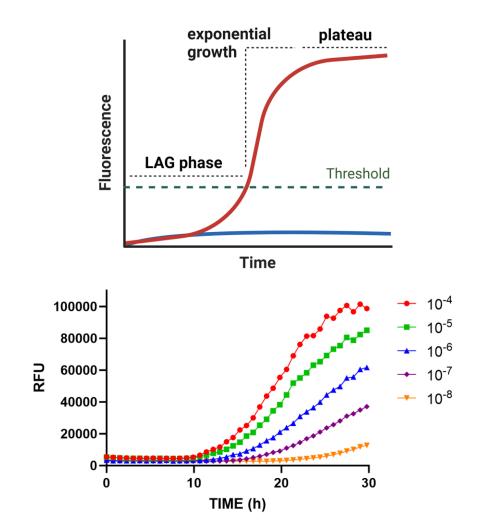


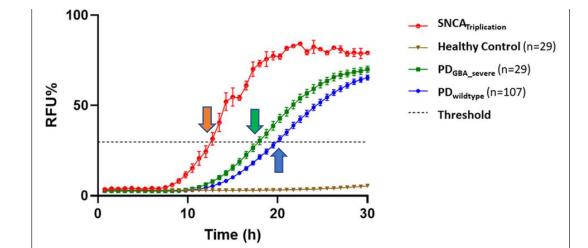
Palmqvist et al, Nature Medicine, 2023

SCC

Scienze Neurologiche

- ✓ Lines show point estimates of survival curves and shaded areas 95% CI
- No participants who were LB- at baseline progressed to PD/DLB
- Progression to PD or DLB was observed in 24 of 94 LB+ after a mean follow-up of 4.46 years
- Other 14 patients developed LB pathology-related signs without fulfilling the clinical criteria for DLB or PD



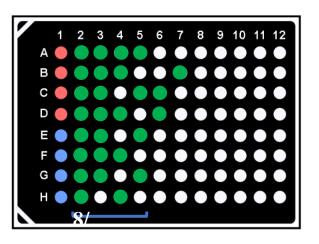


Summary of α-syn CSF SAA results in patients with LBD

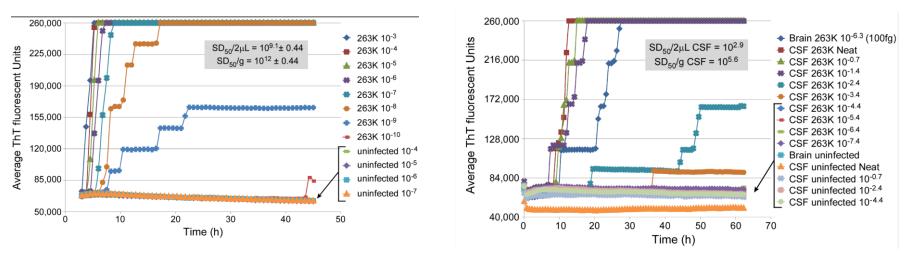
- α-syn SAAs accurately differentiate people with PD from healthy controls and patients with atypical Parkinsonism with high sensitivity and specificity
- The assay accurately identifies patients with LB pathology in the prodromal (and even asymptomatic) stages establishing biomarker-defined at-risk cohorts

Wurster et al. NPJ Parkinson 2024

α-Syn seeding activity is relatively low in CSF collected from
 living patients making lag phases more erratic and
 quantitation more challenging


Lag times can also be influenced by **differences in matrix composition** or **other factors in addition to the initial seed concentration** that could vary between individual patients' biospecimens

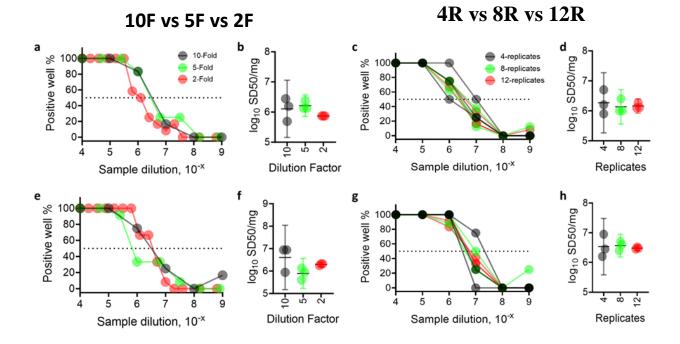
Srivastava A, et al. PLoS Pathog 2024

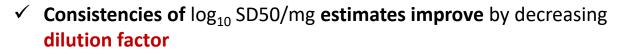


ED RT-QuIC is an alternative (or complementary) approach to the analysis of kinetics parameters like the LAG time that **depends primarily on how seeds dilute out**

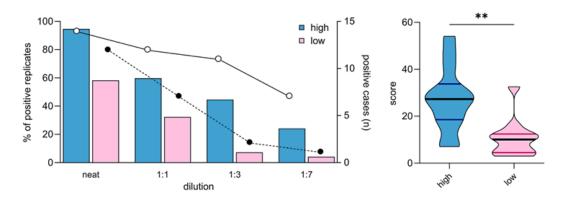
96 well plate

- Negative control
- Positive control
- Positive sample replicates




- ✓ The duration of the lag phase increases and the number of positive replicates decreases with higher dilutions of 263K brain and CSF
- ✓ Analogous to end-point dilution animal bioassays, this approach involves testing of serial dilutions of samples and statistically estimating the seeding dose (SD) giving positive responses in 50% of replicate reactions (SD50)

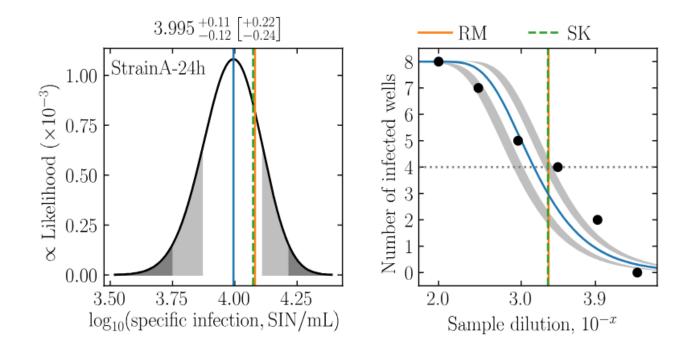
cienze Neurologiche



Influence of Dilution Factor and Replicate Number

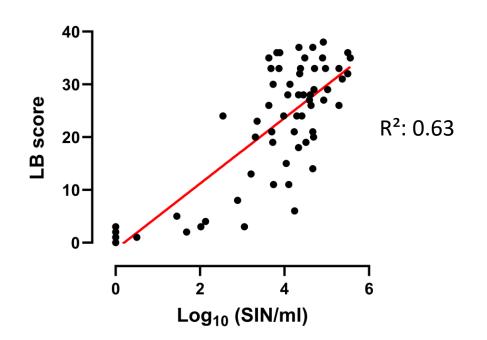
Consistencies of log₁₀ SD50/mg estimates improve by increasing replicate numbers

- The assay accuracy (slightly) improves by increasing replicates from 4 to 8 or 12
- Most significantly, the distinction among patients with different α-syn seeding activity improved by increasing replicate numbers

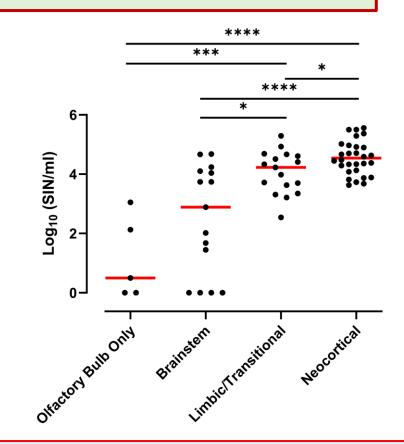

ALMA MATER STUDIORUN

UNIVERSITÀ DI BOLOGNA

ED α-Syn RT-QuIC SAA: Influence of data processing (used algorithm)



Consistencies of log₁₀ SD50/mg estimates improve by analysing the data using Poisson and (especially) midSIN algorithms compared to the (previously used) Spearman-Kaerber (SK) method


Results of CSF α -Syn ED RT-QuIC SAA in patients with LBD

Sample cohort

✓ 70 postmortem CSF collected at autopsy from LBD patients (Arizona Study of Aging and Neurodegenerative Disorders)

Results

 ✓ We found a significant positive association between Log₁₀SIN values, the LB score and the LBD stage

Results of CSF α -Syn ED RT-QuIC SAA in patients with PD

Dependent variable	N patients	Association with SIN50	
		P value	Rho
Age of onset, years	164	0.0003	0.28
Age at visit, years	164	< 0.0001	0.28
Disease duration, years	164	0.15	0.11
Hoehn&Yahr scale	163	0.006	0.21
MDS-UPDRS III scale	151	0.0006	0.27
MoCA scale	151	0.01	-0.20
PD-NMS scale	72	0.08	0.21
BDI-2 scale	114	0.29	0.10
Sniff Sticks, %	56	0.05	-0.27
UMSARS – Orthostatic symptoms 🔴	63	0.004	0.35
UMSARS – Urge	62	0.38	0.11
UMSARS – Erectile dysfunction	62	0.007	0.34
UMSARS – Constipation	63	0.010	0.32
CSF t-tau	150	0.004	0.24
CSF p-tau181	145	0.02	0.20
CSF NfL	143	0.0001	0.31
RT-QuIC Nrep (/8)	164	< 0.0001	0.79

Sample cohort

 CSF collected *in vivo by LP* from **164 PD** participants (University Hospital of Tuebingen, Germany)

Results

- Log₁₀ SIN50/ml values in the CSF of PD patients with a positive α-Syn SAA ranged from 0.3 to
 2.0 (from 0.3 to 5.3 in *post-mortem* CSF)
- Most clinical variables of PD severity showed significant association with log₁₀ SIN50/ml values
 - Cognitive function
 - Motor function
 - Olfactory function
 - Autonomic function
- CSF biomarkers

- ED α-syn RT-QuIC SAA provides "quantitative" data that correlate with the LB pathology "load"/stage and clinical scores of motor, cognitive, and autonomic dysfunction
- The degree relative levels of α-syn seeding activity in CSF could serve as an index of disease severity and progression
- These (preliminary) data support the use of ED RT-QuIC SAA as surrogate markers of response to experimental drugs in clinical trials or as a prognostic marker in clinical practice

ACKNOWLEDGEMENTS

NDG Program at ISNB

Clinical assessment:

Sabina Capellari MD Simone Baiardi MD PhD Andrea Mastrangelo MD Giuseppe Bentivenga MD Histopathology:

Simone Baiardi MD PhD

Molecular genetics:

Sabina Capellari MD

RT-QuIC and Biomarkers:

Marcello Rossi PhD Angela Mammana PhD Alice Ticca MSc Franco Magliocchetti MSc Serena Caldera MSc Claudia Vargiu MSc

Clinical Neurologists at ISNB

Pietro Cortelli MD PhD Giovanna Calandra-Buonaura MD PhD Luisa Sambati MD PhD Giulia Giannini MD PhD

Collaborators

External (sample cohorts)

Department of Clinical Sciences, Malmö, Lund University, Sweden Oskar Hansson MD, PhD

Sleep Centre, Hospital Clínic Barcelona, Universitat de Barcelona Alex Iranzo MD

German Center for Neurodegenerative Diseases, University of Tuebingen, Germany, DE Kathrin Brockmann MD

External (RT-QuIC support) Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, USA

Byron Caughey PhD