Discovery and functional genetics analysis of human prion disease modifiers ...and its intersection with Alzheimer's disease and related dementia disorders

Prof Simon Mead

National Prion Clinic, UCLH, London, UK MRC Prion Unit at UCL Institute of Prion Diseases

Summary

An update on human genetics and prion diseases from a collaborative group of clinical researchers led by MRC Prion Unit at UCL, London

- Strong genetic effects in prion disease and ADRD
- Genome wide association study of sporadic CJD and extensions
- Multi-omic analysis of genetic risk factors in CJD and AD
- Pathways and gene prioritisation
- Direct correlation of AD and CJD
- Correlation with other dementia disorders PSP
- Overlap 1: intracellular trafficking STX6
- Overlap 2: lipid metabolism sulfatides/premetabolites

Genetic architecture of human prion diseaes

- Myth of infectious disease most prion disease is sporadic or inherited ~AD
- Certain amino-acid altering variants of PrP massively alter risk of disease
- Background risk CJD ~1:5000 to close to certainty, increase 10-100x, increase moderately, protect modestly, or offer complete resistance
- Comparable to APP variants in familial AD

MRC Prion Unit at UCL

Prion mechanisms – which are shared in prion-like conditions?

Genome wide association study

Why do we want to do it?

- Aside from Randomised Controlled Clinical Trials best way to discover *causal* mechanisms in humans
- Fundamental origin of the most common human prion disease sCJD is uncertain
- May answer questions about shared aetiology prion and prion-like
- Potential to discover genes, cell types, broader mechanisms of human disease that hitherto were entirely unpredicted
- We know PrP is *the* target and drug pipeline expanding, but would like more than one target, genetics may also inspired therapeutic mechanisms at a target
- Human genetically-inspired drug targets are in general more likely to succeed in development, true for both Mendelian linked loci, and weaker, GWAS loci

Genome wide association study

MRC Prion Unit at UCL

GWAS – 2020 CJD discoveries and extensions

- 5,208 clinically or pathologically diagnosed cases and 13,569 controls
- 3 risk loci, 2 others
- Pathway analysis reveals no significant gene sets enrichment
- Cell type specific expression reveals oligodendrocyte expressed genes (STX6 eQTL, GAL3ST1)
- No non-PRNP determinants of Age of onset or Duration and no genetic correlation between these phenotypes

Jones et al. Lancet Neurology 2020; Hummerich et al. PLOS One 2024

GWAS – Alzheimer's disease Bellenguez, Kucukali et al. 2022 (Nat Genet)

- 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls
- 75 risk loci
- Pathway analysis reveals gene sets related to amyloid, tau, lipids, endocytosis and immunity (macrophage and microglial activation)
- Cell type specific expression reveals microglial expressed genes enriched

GWAS – Genetic Correlation between CJD, AD and other dementias

- Use GWAS data to ask how heritable and to compare traits ie how genetically correlated
- Linkage Disequilibrium Score Regression
- AD vs CJD Correlation 0.31 (se=0.19) P=0.10

(similar for other dementia disorders meaning *overall* each disorder has its own set of risk genes)

...but story different when look at individual genes

GWAS – Genetic Correlation between CJD, PSP

nature communications

Article

https://doi.org/10.1038/s41467-024-5202

Genetic, transcriptomic, histological, and biochemical analysis of progressive supranuclear palsy implicates glial activation and novel risk genes

auprumucieur paisy implicates guaracuy and novel risk genes

- Progressive Supranuclear Palsy genetic risk loci: MAPT, MOBP, STX6, RUNX2, SLCO1A2, C4A
- Proposed index SNP intronic rs3789362-A increases STX6 expression by modifying an oligodendrocyte-specific enhancer sequence
- In CJD we proposed index SNP rs3747957-A which is a synonymous transcript variant
- Two SNPs are 2161bp apart and in perfect correlation in European ancestries populations
- Almost certainly the same genetic risk effect

Transcriptome and Proteome wide association study

- Worked with second author of the Bellenguez et al. paper in AD using the same methods
- Model of transcript and protein expression based on shared brain bank and blood data (healthy people)
- Here looking at whether modelled levels of protein or transcript expression affect risk of CJD
- Two different frontal cortex series
- STX6 is PWAS significant
- PDIA4 protein also
- New protein product of MANF also
- Mesencephalic Astrocyte Derived Neurotrophic Factor

Transcriptome and Proteome wide association study

genetics

LETTERS https://doi.org/10.1038/s41588-020-00773-2

Check for updates

Integrating human brain proteomes with genome-wide association data implicates new proteins in Alzheimer's disease pathogenesis

Aliza P. Wingo ^{1,2}, Yue Liu³, Ekaterina S. Gerasimov³, Jake Gockley⁴, Benjamin A. Logsdon⁶, Duc M. Duong⁵, Eric B. Dammer⁶, Chloe Robins³, Thomas G. Beach⁶, Eric M. Reiman⁶, Michael P. Epstein⁶, Philip L. De Jager⁶, James J. Lah³, David A. Bennett¹⁰, Nicholas T. Seyfried⁶, Allan I. Levey⁶ and Thomas S. Wingo⁶

Alitza P., Wingo & W.G., Yue Liu⁴, Ekaterina S. Gerasimov⁴, Jake Gockley⁴, Bonjamin A. Logsdone⁴, Duc M. Duong⁵, Eric B. Dammer ⁶⁵, Chloe Robins³, Thomas G. Beach⁴, Eric M. Reiman⁶7, Michael P. Epstein ⁶⁸, Philip L. De Jager ⁶⁹, James J. Lah³, David A. Bennett⁹, Nicholas T. Seyfried ⁶⁵, Allan I. Levey ⁶⁹³ and Thomas S. Wingo ^{60,38}

Assessing the Role of Stx6 in the Initial Establishment of Infection in vivo

Focus = Doses with a Partial Attack Rate

Stx6^{-/-} Mice are Less Susceptible to Prion Infection

	Stx6 ^{+/+} Mice		<i>Stx6^{-/-}</i> Mice			P-Value
Dilution	Attack	Attack	Attack	Attack	Odds Ratio (95% CI)	(Genotype)
	Rate	Rate (%)	Rate	Rate (%)		
10 ⁻⁵	13/15	86.7	11/14	78.6	1.77 (0.309-11.2)	
10 ⁻⁶	10/13	76.9	7/13	53.8	2.86 (0.509-12.7)	0.0500
10 ⁻⁷	3/12	25.0	1/14	7.14	4.33 (0.537-59.9)	
10 ⁻⁸	1/11	9.09	0/15	0.00	Infinity (0.152-infinity)	
Combined	27/51	52.9	19/56	33.9	2.19 (1.01-4.56)	

At dilutions 10^{-5} and higher, $Stx6^{+/+}$ mice have ~2 times higher odds of developing prion disease compared to $Stx6^{-/-}$ mice

MRC Prion Unit at UCL

Syntaxin-6 Modifies Prion-Related Phenotypes in Cellular Models with a Role in Prion Trafficking and Export

Changes in PrP^d Distribution in Chronically Infected Cells with Syntaxin-6 Knockdown

Syntaxin-6 Modifies Prion-Related Phenotypes in Cellular Models with a Role in Prion Trafficking and Export

Changes in PrP^d Distribution in Chronically Infected Cells with Syntaxin-6 Knockdown

- Redistribution as opposed to increased infectivity as prion steady state levels are unchanged
- Data in keeping with an intracellular trafficking mechanism of action

Syntaxin-6 Modifies Prion-Related Phenotypes in Cellular Models with a Role in Prion Trafficking and Export

Altered Prion Export in Chronically Infected Cells with Syntaxin-6 Knockdown

MRC Prion Unit at UCL

Protective Effect of Syntaxin-6 Knockout on Functional Outcome Measures in a Humanised Tauopathy Mouse Model

Rotarod Performance

Stars refer to main experimental comparison between Stx6+/+;hTau^{P301S/P301S} mice and Stx6-/-;hTau^{P301S/P301S} mice.

MRC Prion Unit at UCL

Stx6^{-/-};hTau

Stx6^{-/-}:mTau^{+/+}

Altered Neuropathological Outcome Measures in a Humanised Tauopathy Mouse Model with Syntaxin-6 Knockout

Stx6^{-/-};hTau P301S/P301S

Neuronal Loss

AT8-Positive Tangles

Stx6^{-/-};mTau^{+/+}

Localised increases of pathological tau species in *Stx6*^{-/-};h*Tau*^{P301S/P301S} mice in keeping with a role of syntaxin-6 in tau spread.

MRC Prion Unit at UCL

Syntaxin-6 direct interaction with prion protein fibrils

RESEARCH ARTICLE

Syntaxin-6 delays prion protein fibril formation and prolongs the presence of toxic aggregation intermediates

Daljit Sangar, Elizabeth Hill, Kezia Jack, Mark Batchelor, Beenaben Mistry, Juan M Ribes, Graham S Jackson, Simon Mead, Jan Bieschke*

MRC Prion Unit at UCL, Institute of Prion Diseases, London, United Kingdom

MRC Prion Unit at UCL, Institute of Prion Diseases, London, United Kingdom

- Recombinant PrP fibril formation assay in near native conditions
- Syntaxin6 seen to bind fibrils and delayed the lag phase of their growth
- Imaging showed less ordered aggregates using EM and superresolution microscopy

Exploring the Role of GAL3ST1 in Prion Disease Pathogenesis

- Rs2267161-C risk factor
- A common amino acid variant (V29M) of the sole enzyme involved in the synthesis of sulfatide (GAL3ST1 gene)
- Sulfatide = a dominant component of the myelin sheath.
- Implicates sulfatide metabolism as a novel causal mechanism in prion disease
- Pathway is littered with neurological disease genes particularly noteworthy is *GBA* in Parkinson's disease

Exploring the Role of GAL3ST1 in Prion Disease Pathogenesis

Hypothesis of Direction of Effect

The 29V allele is associated with CJD risk and increased sulfatide levels in blood vs the 29M allele (total & five classes of sulfatides, $P=2.5x10^{-15} - 2.7x \ 10^{-37}$)

The V29M polymorphism is associated with 147 different brain imaging phenotypes $P<10^{-6} - P<10^{-21}$ strongest association with diffusion weighted imaging suggesting change to white matter tracts in UK Biobank research imaging data

We hypothesise that certain sulfatides or premetabolites act as cofactors for prion nucleation, propagation or toxicity

Sulfatides are notable anionic components of lipid membranes and concentrate in lipid rafts with Prion protein

Prion Transmission Study in Mice with Knockout of Sporadic Creutzfeldt-Jakob Disease Risk Gene, Gal3st1

Comparable Clinical Endpoint Measures

Comparable Biochemical and Neuropathological Hallmarks

Speculatively how might risk genes work in CJD?

Küçükali, Hill...Mead et al. Brain (2024) – under revision paper on BioRxiv.

Genetic architecture of human prion diseaes

- Genetic architecture has clear parallels with other dementia disorders
- Mendelian mutations and resistance factors in the gene which encodes abnormal protein aggregates
- Common modifiers in genes from shared pathways - intracellular trafficking, sulfatide metabolism

Conclusions

- No new therapeutic targets can be justified by human genetics, so far, but note mechanism of protection at *PRNP* is dominant negative not LoF
- Some possible mechanisms discussed for non-PrP risk factors which seem to be acting a very early stages of disease, not so relevant to sCJD treatment
- Role of oligodendrocytes promoted (STX6, GAL3ST1) no microglial risk gene signature in prion unlike Alzheimer's disease
- Modifiers of clinical phenotype != Risk, an area to develop
- ADRD Overall weak correlations but some risk genes and metabolic pathways of interest are shared, presumably reflecting prion-like mechanisms
- Future work: genome sequencing, larger samples esp. in disease duration, populations outside of European ancestries, further testing in model systems

National Prion Clinic/Human Genetics Acknowledgements

John Collinge

Gargi Banerjee

Tze How Mok

Peter Rudge

Regina Appenteng

Tom Coysh

Leah Holm-Mercer

Rachel Williams

Kirsty McNiven

Rowena Baker

Jennifer Foley

Lily Farakish

www.ucl.ac.uk/national-prion-clinic/clinic-staff

www.prion.ucl.ac.uk www.nationalprionclinic.org www.prion.ucl.ac.uk/clinic-services

@MRC_Prion @smead2 on X

NHS

Veronica O'Donnell

GWAS Acknowledgements

Fahri Küçükali, PhD Postdoctoral Researcher VIB – UAntwerp Center for Molecular Neurology Complex Genetics of Alzheimer's Disease Group

PI Professor University of Antwerp VIB CMN - Genetics of Alzheimer's Disease

Richard Knight

RC Prion Unit at UC

Holger Hummerich Emma Jones Lee Darwent Tracy Campbell Emmanuelle Vire John Collinge NPC Staff

Franc

Stephane Haik Jean-Louis Laplanche Jean-Philippe Brandel Elodie Bouaziz-Amar

SJ van Der Lee

Cornelia Van Duijn

Hata Karamujić-Čomić

Carla A Ibrahim-Verbaas

Inga Zerr

Karl Frontzek

Spain

Stephanie Booth

Gerard H Jansen

Brian Appleby

Michael Geschwind

Theresa Driscoll

Pierluigi Gambetti

Katie Glisic

Kolette Cho

Jiri Safar

Michael B Coulthart

Miguel Calero Pascual Sanchez Juan Olga Calero Antonio Salas Raquel Sanchez-Valle

Italy

Piero Parchi Fabrizio Tagliavini Maurizio Pocchiari Anna Poleggi Anna Ladogana Anna Bartoletti-Stella Sabina Capellari Robero Chiesa Fabio Moda

Denmark Ausrine Areskeviciute Eva Lund

Poland Pawel Liberski Beata Sikorska Ewa Golanska

Saima Zafar Peter Hermann

Switzerland Herbert Budka Adriano Aguzzi Gabor Kovacs Ellen Gelpi Herbert Budka

Australi

Steve Collins Christiane Stehmann Shannon Sarros New Zealand

Candidate Risk Gene Prioristization in CJD

