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Summary

An update on human genetics and prion diseases from a collaborative
group of clinical researchers led by MRC Prion Unit at UCL, London

« Strong genetic effects in prion disease and ADRD

« Genome wide association study of sporadic CJD and extensions
« Multi-omic analysis of genetic risk factors in CJD and AD

« Pathways and gene prioritisation

« Direct correlation of AD and CJD

« Correlation with other dementia disorders - PSP

« QOverlap 1: intracellular trafficking - STX6

* QOverlap 2: lipid metabolism — sulfatides/premetabolites

MRC Prion Unit at UCL



Strong

Effect size

Weak

Genetic architecture of human prion diseaes

MRC Prion Unit at UCL

Rare

Intermediate

Population Allele Frequency

Frequent

Myth of infectious disease most
prion disease is sporadic or
Inherited ~AD

Certain amino-acid altering
variants of PrP massively alter
risk of disease

Background risk CJD ~1:5000 to
close to certainty, increase 10-
100x, increase moderately,
protect modestly, or offer
complete resistance

Comparable to APP variants in
familial AD



Prion mechanisms — which are shared in prion-like conditions?
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Genome wide associlation study

Why do we want to do it?

« Aside from Randomised Controlled Clinical Trials best way to discover causal
mechanisms in humans

« Fundamental origin of the most common human prion disease sCJD is uncertain

« May answer questions about shared aetiology prion and prion-like

« Potential to discover genes, cell types, broader mechanisms of human disease
that hitherto were entirely unpredicted

*  We know PrP is the target and drug pipeline expanding, but would like more than
one target, genetics may also inspired therapeutic mechanisms at a target

« Human genetically-inspired drug targets are in general more likely to succeed in
development, true for both Mendelian linked loci, and weaker, GWAS loci

MRC Prion Unit at UCL



DNA from
Patients

diagnosed
with at least
probable CID

MRC Prion Unit at UCL

660,000
Single
nucleotide
polymorphisms
in each case

What Is a
typical
GWAS?

Quality Control

Imputation using
huge population
panels to fill in
gaps 6-10M
SNPs

Statistical
comparison of
groups

Genome wide association study
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GWAS - 2020 CJD discoveries and extensions

« 5,208 clinically or
pathologically diagnosed cases

and 13,569 controls
PI;?NP « 3riskloci, 2 others
14
« Pathway analysis reveals no
12 : significant gene sets
10 GAL3ST1 enrichment
8 57;X6 PDIA4 BMERB1 - - .
: . . * Cell type specific expression
6 ‘ . * EE + reveals oligodendrocyte
;'w i 4 Lo e itﬁl ol 3 ; ? 2 +:f3 expressed genes (STX6 eQTL,
2
* No non-PRNP determinants of
0 Age of onset or Duration and

1 2 3 4 5 6 7 8 9 10 12 14 16 18 21 no genetic correlation between

these phenotypes
Chromosome

Jones et al. Lancet Neurology 2020; Hummerich et al. PLOS One 2024



GWAS —Alzheimer’s disease Bellenguez, Kucukali et al. 2022 (Nat Genet)
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GWAS - Genetic Correlation between CJD, AD and other dementias

« Use GWAS data to ask how heritable and to compare
traits ie how genetically correlated

« Linkage Disequilibrium Score Regression
« AD vs CJD - Correlation 0.31 (se=0.19) P=0.10

(similar for other dementia disorders meaning overall each
disorder has its own set of risk genes)

...but story different when look at individual genes



GWAS - Genetic Correlation between CJD, PSP

* Progressive Supranuclear Palsy genetic risk loci:

\ MAPT, MOBP, STX6, RUNX2, SLCO1A2, C4A
nature communications

* Proposed index SNP intronic rs3789362-A

: : — e increases STX6 expression by modifying an
Genetic, transcriptomic, histological, and oligodendrocyte-specific enhancer sequence

Article

https: //doi.org/10.%

biochemical analysis of progressive
supranuclear palsy implicates glial activation EEEEEEET RN SRV IR BN AR 2y oy
and novel risk genes which is a synonymous transcript variant

« Two SNPs are 2161bp apart and in perfect
correlation in European ancestries populations

* Almost certainly the same genetic risk effect
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Transcriptome and Proteome wide association study
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Worked with second author of the
Bellenguez et al. paper in AD using the
same methods

Model of transcript and protein
expression based on shared brain
bank and blood data (healthy people)

Here looking at whether modelled
levels of protein or transcript
expression affect risk of CJD

Two different frontal cortex series
STX6 is PWAS significant

PDIA4 protein also

New protein product of MANF also

Mesencephalic Astrocyte Derived
Neurotrophic Factor



Transcriptome and Proteome wide association study

nature

oenetics
| genetcs

Integrating human brain proteomes with
genome-wide association data implicates new
proteins in Alzheimer's disease pathogenesis

, Yue Liu?, Ekaterina S. Gerasimov?, Jake Gockley*, Benjamin A. Logsdon®*,

Aliza P. Wingo©'? :
5 Chloe Robins’, Thomas G. Beach®, Eric M. Reiman®’,

Duc M. Duong®, Eric B. Dammer
Michael P. Epstein©®, Philip L. De Jager®*
Allan |. Levey ©@? and Thomas S. Wingo©?3*

» James J. Lah®, David A. Bennett", Nicholas T. Seyfried©%,
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Assessing the Role of Stx6 In the Initial Establishment of Infection in vivo
Study Design

Stx6** and Stx67- mice were infected

with a titration series of RML prions.
P N e W W
Prion

~
PrPc ' ' ' ' ' ' ' '
m mmnmmwm b o I’ 10* wa 10*
VTRV TRAR AN ﬁ ﬁ i i i i

Focus = Doses with a Partial Attack Rate

RML-Infected
C57BL/6 Brain

Establishment of

Infection

Dilution

Stx67-Mice are Less Susceptible to Prion Infection

Stx6*"* Mice Stx6”7 Mice P-Value
Dilution  Attack  Attack Attack Attack Odds Ratio (95% Cl) (Genotype) 100 = .
Rate  Rate (%) Rate Rate (%) Stx6™" Mice
107 13/15 86.7 11/14 78.6 1.77 (0.309-11.2) 80 mmm Stx67 Mice
10° 10/13 76.9 7/13 53.8 2.86 (0.509-12.7) 0.0500
107 3/12 25.0 1/14 7.14 4.33 (0.537-59.9) % 50
10°® 1/11 9.09 0/15 0.00 Infinity (0.152-infinity) o
Combined 27/51 529 19/56 33.9 2.19 (1.01-4.56) % 40
(-U -
. : : z
At dilutions 10 and higher, Stx6** mice -
have ~2 times higher odds of developing »
prion disease compared to Stx67 mice T 100 107 10

RML Inoculum Dilution

MRC Prion Unit at UCL



Syntaxin-6 Modifies Prion-Related Phenotypes in Cellular Models
with a Role in Prion Trafficking and Export

Changes in PrPd Distribution in Chronically
Infected Cells with Syntaxin-6 Knockdown

MRC Prion Unit at UCL
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Syntaxin-6 Modifies Prion-Related Phenotypes in Cellular Models
with a Role in Prion Trafficking and Export

Changes in PrPd Distribution in Chronically
Infected Cells with Syntaxin-6 Knockdown

MRC Prion Unit at UCL
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Redistribution as opposed
to increased infectivity as
prion steady state levels
are unchanged

Data in keeping with an
intracellular trafficking
mechanism of action



Syntaxin-6 Modifies Prion-Related Phenotypes in Cellular Models
with a Role in Prion Trafficking and Export

Altered Prion Export in Chronically Infected
Cells with Syntaxin-6 Knockdown

Following transier]t_ Stx6 _ - % . %
knockdown, conditioned media @ o "'ir MOB B
Hullulolill was applied to PK1 reporter cells Le;ipf’;f L N
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1
Ko
Q
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Protective Effect of Syntaxin-6 Knockout on Functional Outcome
Measures in a Humanised Tauopathy Mouse Model

Rotarod Performance

Month 1
60—
8 50-
L
= 40+
©
(s
© 30+
> — Stx6”; mTau
2 20+ Stx6**; mTau
__2 Stx6"*; hTayP3015P301S
S 109 — stx6*: hTauPo01S/P301S
Y | T 1 1 1
8 16 24 32 40
Speed (rpm)
Month 3
60~ - ok .
0 !
= 40—
T
N 1
i) 304
)
S’ 20
2
3 104
0 T T T T 1
8 16 24 32 ]

Speed (rpm)

Month 2

kkk

T T T 1
16 24 32 40

Speed (rpm)

0 —

Month 4

*

T T T T 1
8 16 24 32 40

Speed (rpm)

Stars refer to main experimental comparison between

MRC Prion Unit at UCL
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Altered Neuropathological Outcome Measures in a Humanised

Tauopathy Mouse Model with Syntaxin-6 Knockout

Neuronal Loss
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Syntaxin-6 direct interaction with prion protein fibrils

MRC Prion Unit at UCL

Syntaxin-6 delays prion protein fibril

formation and prolongs the presence of

toxic aggregation intermediates

Daljit Sangar, Elizabeth Hill, Kezia Jack, Mark Batchelf)r, Beenaben Mistry,
Juan M Ribes, Graham S Jackson, Simon Mead, Jan Bieschke*

MRC Prion Unit at UCL, Institute of Prion Diseases, London, United Kingdom

N B

Recombinant PrP fibril
formation assay in near native
conditions

Syntaxin6 seen to bind fibrils
and delayed the lag phase of
their growth

Imaging showed less ordered
aggregates using EM and
superresolution microscopy



Exploring the Role of GAL3ST1 in Prion Disease Pathogenesis

Sphingosine
Farber disease
caused by defect
in acid ceramidase Niemann-Pick disease caused by

defect in acid sphingomyelinase

<+— <+0—
Gluco-cerebroside Sphingomyelin
—o> —>

Gaucher disease
caused by defect in
beta - glucosidase

*Parkinson’s disease

Krabbe disease caused
by a defect in galactocerebrosidase

4_
— >

Galacto-cerebroside

GAL3ST1 variants in this gene Metachromic leukodystrophy
are risk factors for sporadic CJD caused by defect in arylsulfatase A

*sCJD

Sulfatide

Sphingosine backbone

OH Fatty acid making a Ceramide

MRC Prion Unit at UCL

Rs2267161-C risk factor

A common amino acid variant
(V29M) of the sole enzyme
involved in the synthesis of
sulfatide (GAL3ST1 gene)

Sulfatide = a dominant
component of the myelin sheath.

Implicates sulfatide metabolism
as a novel causal mechanism in
prion disease

Pathway is littered with
neurological disease genes
particularly noteworthy is GBA in
Parkinson’s disease



Exploring the Role of GAL3ST1 in Prion Disease Pathogenesis

Hypothesis of Direction of Effect

=
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The 29V allele is associated with CJD risk and increased
sulfatide levels in blood vs the 29M allele (total & five classes of
sulfatides, P=2.5x101> — 2.7x 10-37)

We hypothesise that certain

sulfatides or premetabolites act as
The V29M polymorphism is associated with 147 different brain cofactors for prion nucleation,

propagation or toxicity

imaging phenotypes P<10%-P<10-21 strongest association with
diffusion weighted imaging suggesting change to white matter tracts

in UK Biobank research imaging data Sulfatides are notable anionic

components of lipid membranes
and concentrate in lipid rafts with
Prion protein

MRC Prion Unit at UCL



Prion Transmission Study in Mice with Knockout of
Sporadic Creutzfeldt-Jakob Disease Risk Gene, Gal3stl

RML Transmission Study ME7 Transmission Study .
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Speculatively how might risk genes work in CJD?
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Brain (2024) — under revision paper on BioRxiv



Genetic architecture of human prion diseaes

* Genetic architecture has clear
parallels with other dementia

disorders
Strong
* Mendelian mutations and
resistance factors in the gene
. which encodes abnormal protein
S aggregates
‘g
& « Common modifiers in genes from
shared pathways - intracellular
trafficking, sulfatide metabolism
Weak

Rare Intermediate Frequent

Population Allele Frequency
MRC Prion Unit at UCL



Conclusions

No new therapeutic targets can be justified by human genetics, so far, but note
mechanism of protection at PRNP is dominant negative not LoF

Some possible mechanisms discussed for non-PrP risk factors which seem to be
acting a very early stages of disease, not so relevant to sCJD treatment

Role of oligodendrocytes promoted (STX6, GAL3ST1) no microglial risk gene
signature in prion unlike Alzheimer’s disease

Modifiers of clinical phenotype != Risk, an area to develop

ADRD - Overall weak correlations but some risk genes and metabolic pathways of
Interest are shared, presumably reflecting prion-like mechanisms

Future work: genome sequencing, larger samples esp. in disease duration,
populations outside of European ancestries, further testing in model systems
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Candidate Risk Gene Prioristization in CJD
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