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Molecular basis of prion diseases: refolding and aggregation of PrP

(James et al., 

PNAS 1997)

PrPC PrPSc
Kraus et al., Mol Cell 2021

Cryo-EM

Structure(s) that allow PrPSc prions to propagate 

as infectious pathogens?

~109 lethal doses/mg

Can be fibrillar:
 Wegmann et al., EJP 2008

 Rouvinski et al., JCB 2014 
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Cryo-EM-based atomic model of 263K scrapie prion fibril 
based on threading/fitting of PrP residues of PK-resistant core
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• Cross-section: single monomer with -strands and loops
• Monomers stacked with parallel in-register intermolecular -sheet (PIRIBS) architecture
• Glycans and GPI anchor project outward
• Cofactors on periphery?

Kraus et al., Mol Cell 2021
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Variations in shared motifs and sequence 
(at 8 residues within core region):

➢ distinct templates for faithful 
propagation of strain conformers

➢ bases for differential transmission 
(e.g. species) barriers.

Interspecies variation: hamster 263K vs mouse aRML prion cryo-EM structures

Kraus et al., Mol Cell 2021

Hoyt et al., Nature Comm 2022

Manka et al., Nature Comm 2022

Caughey et al., PLoS Path, 2022



Variations in shared motifs and sequence 
(at 8 residues within core region):

➢ distinct templates for faithful 
propagation of strain conformers

➢ bases for differential transmission 
(e.g. species) barriers.

➢ Needed comparison of strains from 
same host genotype to identify purely 
conformational determinants of prion 
strain phenotypes 
• Same PrP sequence
• Same cofactor pool

Interspecies variation: hamster 263K vs mouse aRML prion cryo-EM structures

Kraus et al., Mol Cell 2021

Hoyt et al., Nature Comm 2022

Manka et al., Nature Comm 2022

Caughey et al., PLoS Path, 2022
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Strain variation: a22L & aRML prion strains from the same genotype of mouse

• Conformationally conserved regions, especially near N-terminus 
• Strain-dependent variations within shared motifs outside of conserved region
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Strain variation: a22L & aRML prion strains from the same genotype of mouse

• Conformationally conserved regions, especially near N-terminus 
• Strain-dependent variations within shared motifs outside of conserved region
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Strain variation: a22L & aRML prion strains from the same genotype of mouse

• Conformationally conserved regions, especially near N-terminus 
• Strain-dependent variations within shared motifs outside of conserved region
• Similar themes from comparison of RML & ME7 strains (Manka et al, Nat Comm 2022 & Nat Chem Biol 2023)

Distinct conformational templates provide a molecular basis for the “encoding” of prion strain characteristics 
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Influence of GPI anchor & N-linked glycans?

aRML (GPI-anchorless, underglycosylated)

Hoyt et al., Nature Comm 2022

Manka et al., Nature Comm 2022

Wildtype RML

➢ Glycans & GPIs have little effect on core conformation of RML strain

GPI

glycans



Influence of GPI anchor & N-linked glycans?

aRML (GPI-anchorless, underglycosylated)

Hoyt et al., Nature Comm 2022

Manka et al., Nature Comm 2022

Wildtype RML

➢ Glycans & GPIs have little effect on core conformation of RML strain

Chesebro et al., Science 2005
Chesebro et al., PLoS Path 2010

BUT, have huge effects on PrPSc distribution and pathology:

IHC: abnormal PrP (red)

@ terminal stage

➢ Amyloid angiopathy

➢ Heavy PrPSc load

➢ Diffuse, neuropil

➢ Lighter PrPSc load

➢ Higher specific toxicity 

(per unit mass)?

GPI
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• Nonetheless, both anchorless and wildtype prions are lethal.
➢ Both GPI-dependent and -independent toxicities



Influence of GPI anchor & N-linked glycans?

aRML (GPI-anchorless, underglycosylated)

Hoyt et al., Nature Comm 2022

Manka et al., Nature Comm 2022

Wildtype RML

➢ Glycans & GPIs have little effect on core conformation of RML strain

Chesebro et al., Science 2005
Chesebro et al., PLoS Path 2010

BUT, have huge effects on PrPSc distribution and pathology:

IHC: abnormal PrP (red)

@ terminal stage

➢ Amyloid angiopathy

➢ Heavy PrPSc load

➢ Diffuse, neuropil

➢ Lighter PrPSc load

➢ Higher specific toxicity 

(per unit mass)?

• Nonetheless, both anchorless and wildtype prions are lethal.
➢ Both GPI-dependent and -independent toxicities

• Amyloid form can encipher strain characteristics
GPI

glycans
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Distinct templates & lateral surfaces

➢Differential interactions with:
• Cofactors?
• Membrane components?
• Extracellular matrices?
• Innate immune & 

proteostatic factors?
       e.g. Hasebe et al., Virol 2012

➢ Cell/tissue/region dependence
➢ Strain-dependent patterns of 

deposition & pathology in brain
➢ Distinct clinical phenotypes

How might distinct structures mediate strain-dependent pathogenesis?



top view

side view

Atomic model embedded in EM density map

Structure of a natural prion: CWD fibrils from deer   (Alam, Hoyt, Artikis, et al., Acta Neuropath 2024)
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Comparison to other ex vivo prion structures

Structure of a natural prion: CWD fibrils from deer   (Alam, Hoyt, Artikis, et al., Acta Neuropath 2024)
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Structure of a natural prion: CWD fibrils from deer   (Alam, Hoyt, Artikis, et al., Acta Neuropath 2024)
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• Highly infectious for wild-type hosts (~109 LD50 per mg)
➢ Cores have both N- and C-lobes 
         

• Non-infectious for NHP or tg mice 
over-expressing human PrPC

• (but infectious for bank voles)
➢ Core limited to partial N-lobe 

Atomic model embedded in EM density map

Comparison to other ex vivo prion structures

Structure of a natural prion: CWD fibrils from deer   (Alam, Hoyt, Artikis, et al., Acta Neuropath 2024)
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• Highly infectious for wild-type hosts (~109 LD50 per mg)
➢ Cores have both N- and C-lobes 
         

• Non-infectious for NHP or tg mice 
over-expressing human PrPC

• (but infectious for bank voles)
➢ Core limited to partial N-lobe 

Atomic model embedded in EM density map

• Synthetic PrP amyloid fibrils with only C-lobe 
cores are barely or non-infectious

• But, small conformational differences can make 
huge differences in infectivity 

 Wang et al, PLoS Path 2017

Comparison to other ex vivo prion structures

Implications in assessing potential 
infectivity of other types of amyloids 

Structure of a natural prion: CWD fibrils from deer   (Alam, Hoyt, Artikis, et al., Acta Neuropath 2024)
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• Cross-β core oligomers appear stable as small as a tetramer
(and do not have to look or behave like fibrils!)

• No signs of fragmentation of these oligomers (or 25-mers) within this timeframe
(even at temperatures up to 127°C)
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• Cross-β core oligomers appear stable as small as a tetramer
(and do not have to look or behave like fibrils!)

• No signs of fragmentation of these oligomers (or 25-mers) within this timeframe
(even at temperatures up to 127°C)

Minimal stable size of the infectious prion core: Molecular dynamics 
simulations of dimeric (n=2) to tetradecameric (n=14) fragments

In preparation

14-mer

Also, biochemically: no sign of disassembly of PrPSc aggregates into 
small oligomers under non-inactivating conditions (in our hands)
➢ Prion fragmentation in vivo may require physiological assistance



Summary
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• High-resolution structures of brain-derived PrP fibrils:
• Experimentally rodent-adapted scrapie (263K, RML, aRML, 22L, ME7)
• Natural CWD from naturally infected white-tailed deer
• Human GSS F198S 

• PIRIBS-based architectures 
➢ All brain-derived or synthetic PrP fibrils with unambiguously determined architectures to date are 

PIRIBS-based (n>13) 

• Complete refolding of PrPC is required.

• Glycans and GPI anchors of wildtype prions project outwards but have little 
effect on core structure (RML) 

• Distinct templating surfaces on ends of fibrils encipher strains

• Transmission barrier mechanisms?
• 263K hamster → mice   (Kraus et al., Mol Cell 2021)

• CWD → humans  (Alam et al., Acta Neuropath 2024)

• Non-infectious PrP fibrils have smaller ordered cores

• aRML core structure is mostly stable when as small as a tetramer (in silico)
➢ PIRIBS prions do not have to look like fibrils!

• We’ve seen no evidence efficient spontaneous disassembly of PrPSc 
aggregates into small oligomers 

• Many more prion structures (fibrillar & non-fibrillar?) remain to be 
determined…
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Transmission barrier mechanism?

Hamster 263K prion 
cross-section 

Mouse residue (Y) 
inhibits 263K-seeded 
conversion

(Scott et al., Cell 1993; Priola 
et al., J Virol 2001)
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Transmission barrier mechanism?

Hamster 263K prion 
cross-sections 

Mouse residues superimposed on hamster sequence

Tightly packed sidechains

263K prions

8 different 
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fibril core 
region

x

Efrosini Artikis in 
Kraus et al., Mol Cell, 2021

Steric clashes and required changes in H-bonding 
and backbone conformation likely slow 263K- 
templated conversion of mouse PrPC 

Mouse residue (Y) 
inhibits 263K-seeded 
conversion

(Scott et al., Cell 1993; Priola 
et al., J Virol 2001)
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Last frame of 500ns at 300K – cubic water box, 150mM NaCl



aRML at 400K showing a transient kink, but runs need more sampling time
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