Diversifying the tau amyloid toolkit to probe structure-function relationships

Sue-Ann Mok

Associate Professor Department of Biochemistry University of Alberta

Mechanisms of Neurodegeneration in Human Prion Diseases and Their Intersection with AD/ADRD

November 12, 2024

Tauopathies

 a class of neurodegenerative diseases characterized by tau aggregate pathology

Tau aggregate pathology

Pathology by cell type and affected brain regions

Zhang et al., Mol. Neurodeg., 2022

Tau: dissecting sequence-structure-dysfunction relationships

tau (functional state)

• One sequence, multiple amyloid conformations

• Distinct structures associate with subsets of tauopathies

Tau: dissecting sequence-structure-dysfunction relationships

tau (functional state)

- One sequence, multiple amyloid conformations
- What are the dominant sequence and biochemical determinants regulating amyloid conformations?
- Distinct structures associate with subsets of tauopathies
- What structural elements of amyloids are responsible for dysfunction?

The complex tau biochemical landscape and protein misfolding

The complex tau biochemical landscape and protein misfolding

Can we dissect what biochemical features of tau that drive it towards one polymorph versus another?

How sensitive is the tau misfolding landscape to single missense mutations?

0N4R tau (2N4R numbering)

Taniguchi-Watanabe et al., Acta Neuropathol. 2016

Defining the trypsin-resistant core of recombinant tau aggregates

WT 0N4R tau + heparin

ACS Chem Neuroscience, 2023

High-throughput biochemical platforms to study tau variants, kinetics and aggregate structures

Tark Patel, Allan Yarahmady, Kerry Sun

ACS Chem Neuroscience, 2023

Disease-associated tau mutants generate aggregate structures distinct from WT 0N4R tau

WT

Disease-associated tau mutants generate aggregate structures distinct from WT 0N4R tau

A subset of tau mutants show evidence of promoting more than one major aggregate misfolding pathway

• 29/37 mutants tested generate a **consistent** trypsin digest profile

 8/37 mutants generate
variable digest fragment profiles between independent experiments

Small-scale purified tau protein can be used to measure aggregation kinetics

Tau aggregation kinetics and aggregate structure changes are decoupled

Trypsin digest assays can complement other techniques to better understand factors modulating aggregate structure

Not all mutations behave as predicted by analyzing known structures

Not all mutations behave as predicted by analyzing known structures

Not all mutations behave as predicted by analyzing known structures

Tau mutant amyloids have different seeding capacities

HEK293 line expressing GFP-0N4R tau (P301L)

Kerry Sun

Tau aggregation inducers can also modulate aggregate structure and seeding capacity

Emily McNamara

Tau fibril morphology by negative stain EM

Take home messages

- Tau's aggregation misfolding pathway is sensitive to even small single biochemical changes such as mutations
 - Mutated tau may generate more pathogenic conformations
 - We have only scratched the surface of tau's complex biochemical landscape
- Tau aggregation kinetics and structure may be independent variables contributing to pathogenicity
- Molecular amyloid toolkits can help dissect structure-dysfunction relationships in cells and *in vivo*

Acknowledgements

Lab members

Kerry Sun Mahalashmi Srinivasan Alicia Guzman Scott Dixon Ashlyn Benko Grace Cassidy-Ketchin Angela Lebrudo

(Past members) Tark Patel Allan Yarahmady Emily McNamara Justin Kim Haresh Sureshkumar Ria Ratra Sang-Gyun Kang

<u>Collaborators</u>

Jónathan Heras (U. of La Rioja)

Carlo Condello (UCSF)

Li Gan (Weill Cornell)

Dirk Keene (U. Washington)

Olivier Julien (U. of Alberta)

Richard Fahlman (U. of Alberta)

David Westaway (now at UCSF)

 Ghazaleh Eskandari-Sedighi and Andrew Castle

Satyabrata Kar (U. of Alberta)

Dean Schieve, Helen Tang (U. of Alberta)

prion

AlzheimerSociety ALBERTA AND NORTHWEST TERRITORIES

Model for generation of dominant amyloid polymorphs

compatability with substrate pool reinforcing PTMs, cofactor, and protein interactions resistance to degradation templating and propagation capacity