Reconstructing disease trajectories of alphasynucleinopathies using in vivo seeding models

Kelvin C Luk

Center for Neurodegenerative Disease Research Department of Pathology and Laboratory Medicine University of Pennsylvania

Prion/ADRD Conference 2024

Alpha-synuclein misfolding is a central feature of multiple neurodegenerative disorders

- Histopathological Present in synucleinopathies (PD, PDD/DLB, MSA, and AD)
- Lewy pathology follows dynamic yet predictable pattern(s) that parallel disease progression and symptoms

Braak et al., 2003; Jellinger et al., 2009; Dickson et al., 2010; Goedert 2012

Lewy pathology develops in predictable pattern(s) that parallel disease progression

Long-term goal: interrogate the intermediate processes of synucleinopathy through cellular and in vivo models

•

heterogeneity

aSyn pathology and disease can be transmitted in vivo

Leveraging the self-templating properties of aSyn fibrils

Forno et al, 1996

Giasson et al, 2002

Non-neuronal cells HEK293, SH-SY5Y, HeLa, COS7, SK-MEL-5... (+ liposome)

Internalized fibrils seed the conversion of endogenously-expressed aSyn

In vivo (non-Tg) C57BI/6, CD-1, S129, C3H, DBA Rats, NHP Human LBs PFF-injected nTg G pSynHsp90 pSvn

Volpicelli-Daley et al, *Neuron* 2011 Luk et al, *J Exp Med* 2012 Luk et al, *Science* 2012

A working model of seeded aSyn pathology & transmission

aSyn pathology leads to progressive DA cell loss rodents and NHPs

Marmoset/Macaque

Rat

Luk et al, Science 2012 Recasens et al, Ann Neurol 2014 Paumier et al, Neurobiol Dis 2015 Shimozawa et al, Acta Neuropath Comm 2017 Chu et al, Brain 2019

Seeding-competent aSyn species are present in human synucleinopathies

DenAccess Proper Access BRIEF COMMUNICATION Alpha-synuclein RT-QuIC in the CSF of patients with alpha-synucleinopathies Graham Fairfoul¹, Lynne I. McGuire¹, Suvankar Pal^{1,2}, James W. Ironside¹, Juliane Neumann³, Sharon Christie⁴, Catherine Joachim⁴, Margaret Esiri⁴, Samuel G. Evetts³, Michal Rolinski³, Fahd Baig³, Claudio Ruffmann³, Richard Wade-Martins⁵, Michele T. M. Hu³, Laura Parkkinen³ & Alison J. E. Green¹

Assessment of heterogeneity among participants in the Parkinson's Progression Markers Initiative cohort using α -synuclein seed amplification: a cross-sectional study

Andrew Siderowf^{*}, Luis Concha-Marambio^{*}, David-Erick Lafontant, Carly M Farris, Yihua Ma, Paula A Urenia, Hieu Nguyen, Roy N Alcalay, Lana M Chahine, Tatiana Foroud, Douglas Galasko, Karl Kieburtz, Kalpana Merchant, Brit Mollenhauer, Kathleen L Poston, John Seibyl, Tanya Simuni, Caroline M Tanner, Daniel Weintraub, Aleksandar Videnovic, Seung Ho Choi, Ryan Kurth, Chelsea Caspell-Garcia, Christopher S Coffey, Mark Frasier, Luis M A Oliveira, Samantha J Hutten, Todd Sherer, Kenneth Marek, Claudio Soto, on behalf of the Parkinson's Progression Markers Initiative[†]

https://doi.org/10.1038/s41591-023-02358-9

nature medicine

Article

Propagative α -synuclein seeds as serum biomarkers for synucleinopathies

Received: 1 July 2022	Ayami Okuzumi® ¹ , Taku Hatano® ¹ , Gen Matsumoto ² , Shuko Nojiri ³ , Shin-ichi Ueno® ¹ , Yoko Imamichi-Tatano® ¹ , Haruka Kimura® ¹ , Soichiro Kakuta® ⁴ , Akihide Kondo® ⁵ , Takeshi Fukuhara ⁶ , Yuanzhe Li ¹ , Manabu Funayama® ¹ , Shinji Saiki® ¹⁷ , Daisuke Taniguchi ¹ , Taiji Tsunemi ¹ , Deborah McIntyre ⁸ , Jean-Jacques Gérardy ⁸ , Michel Mittelbronn ⁹ , Rejko Kruger ⁸¹⁰ , Yasuo Uchiyama ¹¹ , Nobuyuki Nukina ¹² & Nobutaka Hattori®
Accepted: 21 April 2023	
Published online: 29 May 2023	
Check for updates	

PFF-injected mouse brain tissue

In vivo pathogenicity established for:

DLB → Masuda-Suzukake, *Brain* 2013

PD/PDD → Recasens, Ann Neurol 2014

MSA → Watts, PNAS 2013; Peng, Nature 2018

ampLB → Uemura, *Nat Communications* 2023

PD is not "simply" a prion disorder

Progressive spread of α-Syn pathology in PFF-treated non-Tg mice

Rahayel et al, Brain 2022

Global monitoring of α-Syn pathology trajectories in the mouse CNS

A. Seeding in different sites

B. Pathology quantification and atlas registration

C. Determining fit against observed spatiotemporal datasets

HIP

ACB

Publically available datasets e.g. Mouse Brain Connectivity Atlas Gene Expression Atlas

Spatial distribution of aSyn pathology points to multiple dynamic processes after an initial seeding event

Site of initial pathology determines the evolution of synucleinopathy in vivo

Local fluctuations in synucleinopathy mirror neuron loss

Synucleinopathy originating from different CNS regions elicit distinct cell loss patterns and phenotypes

Seeded synucleinopathy induce regional transcriptomic signatures

Agent-based modeling of aSyn pathology spread

<u>Susceptible-Infected-Removed (SIR) model</u> Production / Clearance / Misfolding / Propagation

An agent-based (S-I-R) model closely recapitulates in vivo aSyn pathology spread

Rahayel et al, Brain 2022

Snca levels predict vulnerability to aSyn pathology among hippocampal glutamatergic neuron subtypes

aSyn S-I-R models approximate atrophy patterns in iRBD patients

Rahayel et al, Brain 2022b

Connectivity and local aSyn expression are major (but not the only) drivers of pathological spread

Spread of α -synuclein pathology through the brain connectome is modulated by selective vulnerability and predicted by network analysis

Michael X. Henderson[©]^{1*}, Eli J. Cornblath^{2,3}, Adam Darwich¹, Bin Zhang¹, Hannah Brown¹, Ronald J. Gathagan¹, Raizel M. Sandler¹, Danielle S. Bassett[©]^{2,4,5,6,7}, John Q. Trojanowski¹ and Virginia M. Y. Lee¹

Spread is likely determined by

ARTICLES

//doi.org/10.1038/s41593-019-0457-5

- Trans-synaptic spread of pathological aSyn
- Connectivity and network structure (necessary but not sufficient)

nature

neuroscience

• Local (likely cellular) factors - aSyn levels

Additional network and/or cellular determinants?

SCIENCE ADVANCES | RESEARCH ARTICLE

NEUROSCIENCE

Determinants of seeding and spreading of α -synuclein pathology in the brain

Martin T. Henrich^{1,2}*, Fanni F. Geibl²*, Harini Lakshminarasimhan¹, Anna Stegmann², Benoit I. Giasson³, Xiaobo Mao^{4,5}, Valina L. Dawson^{4,5,6,7}, Ted M. Dawson^{4,5,6,8}, Wolfgang H. Oertel^{2†}, D. James Surmeier^{1†‡}

Using contextual seeding to retrace the paths of synucleinopathy

Subcoeruleus/SLD synucleinopathy induces RBD-like phenotypes in mice

Zhang et al, Aging and Disease 2020; Dugger et al, Neuropath App Neurobiol 2012

RBD-like phenotype correlates with aSyn-seeded proteinopathy in the subcoeruleus (SLD)

Hansoo Yoo [Penn/Yonsei University], Russell Luke [Peever Lab, U of Toronto], unpublished

Higher levels of REM phasic muscle activity following PFF-seeding in SLD

Hansoo Yoo [Penn/Yonsei University], Russell Luke [Peever Lab, U of Toronto], unpublished

Summary

Cell-to-cell transmission of aSyn pathology and **local cellular heterogeneity** likely combine to produce the idiosyncratic patterns of neurodegeneration observed in synucleinopathy

Contextual seeding approaches can potentially provide advance our understanding of mechanisms underlying human synucleinopathies and their heterogeneity

Summary

Example prodromal

phenotypes

Berg et al, Nat Rev Neurol 2021

Acknowledgements

Luk Lab Lindsay Agostinelli Elif Cinar Yuling Liang Jonah Lourie Chandler Song

Juliana Benitez Anna Caputo Sam Decker Casey Durso Jin Yong Hong Mian Horvath Shuo Jiang Michael Kozak Angela Lo Esteban Luna Jake Steltz Lucy Torres Cynthia Uzoukwu Yiqun Yan Allison Yearwood Hansoo Yoo

Pathology/CNDR Virginia Lee John Trojanowski Kurt Brunden Sue Leight John Robinson Edward Lee

Penn

Alice Chen-Plotkin Bob Mach Dejian Ren

Collaborators

Alain Dagher, Shady Rahayel, Bratislav Misic (McGill) Jeff Kordower (Arizona State) Rehana Leak (Duquesne) John Peever (U of Toronto) Caryl Sortwell (Michigan State) Vivek Unni (OHSU) Mikko Airaavara (U Helsinki)

R01NS088322 U19AG062418 P01AG084497 U19NS110456

ITMAT **Institute for Translational Medicine** and Therapeutics

PTN Penn Medicine **Translational Neuroscience** Center

kelvincl@pennmedicine.upenn.edu