Transport of prion strains in the peripheral and central nervous system

Jason C. Bartz Department of Medical Microbiology and Immunology Creighton University, Omaha NE.

Prion pathogenesis

Body-first synucleinopathy

- Can cause disease bypassing the requirement for extraneural prion replication.
- Rate of prion spread was 1-2mm per day, consistent with slow axonal transport.
- Prion titers in PNS were lower than CNS or LRS.

Journal of the Neurological Sciences, 1983, 61: 315-325 Elsevier

PATHOGENESIS OF MOUSE SCRAPIE

Evidence for Direct Neural Spread of Infection to the CNS after Injection of Sciatic Nerve

R.H. KIMBERLIN¹, SUSAN M. HALL² and CAROL A. WALKER³

¹ARC and MRC Neuropathogenesis Unit, West Mains Road, Edinburgh, EH9 3JF; ²Department of Anatomy, Guy's Hospital Medical School, London, SE1 9RT; ³ARC Institute for Research on Animal Diseases, Compton, Newbury, RG16 ONN (Great Britain)

Alyssa Block Benjamin Steadman

TABLE 3. Brain distribution of PrP^{TME} in HY and DY TME-infected hamsters

Route, intra-	HY TME	139H	DY TME
Cerebral	58±3 (5/5)	123±3 (5/5)	179±3 (5/5)
Sciatic nerve	67±3 (5/5)	188±3 (5/5)	235±3 (5/5)
Peritoneal	101±3 (5/5)	225±3 (5/5)	>650 (0/5)

Bessen and Marsh, 1994; Ayers et al., 2011; Langenfeld et al., 2016; Block et al., 2021, Steadman et al., 2024

Desig region	HY T	ME	DY TME	
Brain region	Diffuse ^a	Plaque	Diffuse	Plaque
Hippocampus				
Dentate gyrus				
Granule layer	0	0	0	0
Polymorphic layer	++	++	+++	0
Molecular layer	0	0	++	0
Corpus callosum	0	+	0	+++
Occipital cortex ^b	++	++	+ + +	0
Medial geniculate nucleus	++++	0	0	0
Cerebellum				
Granule layer	++	+	+ + +	+
Purkinje layer	0	+	0	0
Molecular layer	0	++	++	+
White matter	0	++	0	++++
Deep nuclei	++++	++	0	+

^{*a*} A scoring system was used to map the brain distribution of PrP^{TME}. The following symbols were used to describe the observed frequency and intensity of PrP^{TME} immunostaining: 0, none; +, rare; ++, mild; +++, moderate; ++++, heavy.

^b HY PrP^{TME} staining was located primarily in the middle cortical layers, while DY PrP^{TME} staining was distributed in all cortical layers.

• PrP^{Sc} first detected in dorsal root ganglion

Ayers et al., 2009

Ayers et al., 2009

Summary of PrP^{Sc} processed and analyzed tissue

- 3 infected and 2 mock infected per time point
- Size of brain ~ 9600µm
 - Cut at 7µm (total of ~1400 sections)

- PrP^{Sc} IHC on every 10th slide.
 - Adjacent sections H&E and Nissl stained
- Maximum distance of 126µm between PrP^{Sc} IHC

Ayers et al., 2009

HY TME

CNS region		PrP ^{Sc} immunostaining at indicated no. of days postinfection ^a					
	21	28	35	42	49	56	
Medulla: pons							
Reticular formation	0	0	+	++	+++	+++	
Lateral vestibular nucleus ^b	0	+°	++	+++	++++	++++	
Cerebellum Interposed nucleus ^b	0	0	+°	++	+++	+++	
Mesencephalon Red nucleus ^b	0	$+^{d}$	$+^d$	++	+++	+++	
Diencephalon Reticular thalamic nucleus ^b Ventroposterior thalamic nucleus ^b	0 0	0 0	0 0	+ ^{<i>d,e</i>} 0	$^{+ + d}_{+ + d}$	$^{++^{d}}_{++^{d}}$	
Felencephalon Hind limb cortex ^b	0	0	0	0	$++^{d}$	+++	

Asymmetrical staining pattern ipsnateral to inoculation site. d Asymmetrical staining pattern contralateral to inoculation site.

e PrPSc was detected in one of three animals examined.

MC

- HY TME, DY TME and 139H prions infect VMNs ipsilateral to the side of inoculation and are transported via the same 4 descending motor tracts.
- The temporal and spatial spread of PrP^{Sc} differed between the strains as a function of days post infection.
- The temporal and spatial spread of PrP^{Sc} was similar when represented as a percentage of the incubation period.

MC

Prion-like propagation of mutant SOD1 misfolding and motor neuron disease spread along neuroanatomical pathways

Jacob I. Ayers¹ · Susan E. Fromholt¹ · Veronica M. O'Neal¹ · Jeffrey H. Diamond¹ · David R. Borchelt^{1,2}

"In addition, a spatiotemporal study of these injections revealed a predictable spread of pathology to brain regions whose axons synapse directly on ventral motor neurons in the spinal cord, strongly supporting axonal transport as a mechanism of spread of the aS inducing, or seeding, factor."

Localized Induction of Wild-Type and Mutant Alpha-Synuclein Aggregation Reveals Propagation along Neuroanatomical Tracts

Jacob I. Ayers,^a Cara J. Riffe,^a Zachary A. Sorrentino,^a Jeffrey Diamond,^a Eric Fagerli,^a Mieu Brooks,^a Ahmad Galaleldeen,^{b,c} P. John Hart,^{c,d} Benoit I. Giasson^a

Table 2 Spatiotemporal distribution and abundance of G85R-
SOD1:YFP inclusion pathology following sciatic nerve inoculation
with G85R-SOD1:YFP homogenate

	1 month	2 month-asym	2 month-sym	End-stage
Spinal cord				
Lumbar	_a	++	+++	+++
Thoracic	-	+	++	+++
Cervical	-	+	+	+++
Brain				
Ret. Form.	-	+	++	+++
Lat. Vest. Nuc.	-	+	+	++
Red. Nuc.	-	+	+	++
Periaq. gray	_	-	+	++
Sup. Coll.	-	-	+	++
Mot. Cx.	-	_	-	-

TABLE 1 Spatiotemporal distribution and abundance of α S pathology in M83^{+/-} mice following sciatic nerve inoculation with mouse WT α S fibs

	Relative abundance of α S inclusion pathology ^a					
Body site	1 mo p.i.	2 mo p.i.	Clinical (3.9 \pm 0.1 mo p.i.)			
DRG						
Ipsilateral	+	++	++			
Contralateral	—	_	+			
Spinal cord						
Lumbar	+	++	+++			
Thoracic	_	+	+++			
Cervical	_	-	+++			
Brain	_					
Reticular formation	_	++	+++			
Lateral vestibular nucleus	_	_	++			
Red nucleus	_	+	+++			
PAG	_	+	+++			
Motor cortex	_	_	+			

a-, none; +, rare; ++, numerous; +++, abundant and widespread.

- Strain-specific differences in PrP^{Sc} deposition patterns in neurons
- DY characterized by PrP^{Sc} deposition in dendritic • arborization.

	Ventral motor neuron	Lateral vestibular nucleus	Red nucleus	Hind limb motor cortex	Overall
HY TME	4.61	4.29	4.52	3.12	4.14±0.35
139H	1.29	1.60	2.59	1.75	1.80±0.27
DY TME	0.92	1.43	1.00	1.03	1.10±0.11

- Rate of spread is consistent with slow axonal transport
- Strain-specific rates of spread observed
- Correspond with tempo of disease

Protein Misfolding Cyclic Amplification

Recapitulates strain properties

	Ventral motor neuron	Lateral vestibular nucleus	Red nucleus	Hind limb motor cortex	Overall
HY TME	4.61	4.29	4.52	3.12	4.14±0.35
139H	1.29	1.60	2.59	1.75	1.80±0.27
DY TME	0.92	1.43	1.00	1.03	1.10±0.11

- Rate of spread is consistent with slow axonal transport
- Strain-specific rates of spread observed
- Correspond with tempo of disease
- Rate of transport vs. rate of spread

Sam Koshy

- Previous studies have measured rates of spread.
- Can we directly measure the inoculum PrP^{Sc} velocity?
- Utilize prion replication deficient systems.
 - Strain
 - Host

PMCA Samples

Ð

263K

n

RML

RM

Un Prep

5

RML RML

Imaging PrP^{Sc} in sciatic nerves of live animals.

Imaging PrP^{Sc} in sciatic nerves of live animals.

- PrP^{Sc} velocities are consistent with fast axonal transport
- Strain specific velocities are not observed
- Not dependent on expression of PrP^C

Prion pathogenesis Sciatic nerve inoculation

24 Hours: Fast Axonal Transport

• Decoupling prion replication vs. prion transport

Prion pathogenesis

- PrP^{Sc} travels along known neuroanatomical pathways
- Transport in the nervous system is a shared feature between prion and prion-like diseases
- Patterns of spread are independent of prion strain.
 - Percentage of inc. period vs. dpi
- PrP^{Sc} velocity in the sciatic nerve is consistent with fast axonal transport
 - Independent of prion strain or PrP^C
- Sciatic nerve inoculation is a useful method to study other aspects of prion biology.
 - Prion strain interference

Acknowledgements

CU - Bartz lab Haziq Akhter **Alyssa Block Josh Gilbert Tess Gunnels** Jay Hrdlicka Sam Koshy Mariam Mahdieh Vivianne Payne **Ronald Shikiya** Sara Simmons **Benjamin Steadman** Sarah Stein **Taylor York** Qi Yuan **Johsette Witt**

Creighton University Tony Kincaid Michael Nichols Anthony Stender Jack Taylor Ryan Walters University of Nebraska Shannon Bartelt-Hunt Colorado State University Candace Mathiason **Glenn Telling** Amanda Woerman **CICbioGUNE** Joaquín Castilla

Michigan State University **Antryg Benedict** Wen Li Hui Li Wei Zhang

University of Minnesota Peter Larsen Marc Schwabenlander **Tiffany Wolf**

> **USDA Bian Jifeng**

UT Medical School at Houston Claudio Soto

MINNESOTA CENTER FOR PRION RESEARCH AND OUTREACH

University of Minnesota Driven to Discover³⁴

North American interdisciplinary chronic wasting disease research consortium

- United States Department of Agriculture NC1209 -

National Institutes of Health

CREUTZFELDT-JAKOB DISEASE FOUNDATION, INC. Supporting Families Affected by Prion Disease

Center

Prion pathogenesis

- PrP^{Sc} travels along known neuroanatomical pathways
- Transport in the nervous system is a shared feature between prion and prion-like diseases
- Patterns of spread are independent of prion strain
 Percentage of inc. period vs. dpi
- PrP^{Sc} velocity in the sciatic nerve is consistent with fast axonal transport
- Targeting prions to the same population of neurons is a powerful means to investigate prion evolution.

Onset of clinical symptoms

First Inoculation	Interval between Inoculations	Second Inoculation	Clinical Signs	After 1 st Inoculation	After 2 nd Inoculation
DY TME	120 days	Mock	DY TME	217±2 ^a	n.a.
Mock	120 days	HY TME	HY TME	n.a.	78±2
DY TME	60 days	HY TME	HY TME	138±3	78±3 ^b
DY TME	90 days	HY TME	HY TME	180±7	90±7 ^c
DY TME	120 days	HY TME	DY TME	220±3 ^d	100±3

• DY TME can interfere with the emergence of HY TME

If DY TME agent replication, ipsilateral to the site of inoculation is responsible for diminishing the ability of the HY TME agent to cause disease, then inoculation of the HY TME agent in the sciatic nerve contralateral to DY TME agent inoculation would result in animals succumbing to HY TME with incubation periods similar to animals inoculated with the HY TME agent alone.

Onset of clinical symptoms

First Inoculation (Right s.n.)	Interval between Inoculations	Second Inoculation (Left s.n.)	Clinical Signs	PrP ^{Sc} migration	A/I ^a	After 1 st Inoculation	After 2 nd Inoculation
Mock	90 days	HY TME	HY TME	21 kDa	5/5	n.a.	77±3 ^b
DY TME	90 days	HY TME	HY TME	21 kDa	5/5	167±3	77±3°
DY TME	90 days	Mock	DY TME	19 kDa	5/5	229±3	n.a.
Mock	120 days	HY TME	HY TME	21 kDa	5/5	n.a.	73±3
DY TME	120 days	HY TME	HY TME	21 kDa	5/5	197 ± 11	77±11°
DY TME	120 days	Mock	DY TME	19 kDa	4/4	232 ± 4	n.a.

^a Number affected / number inoculated

^b Average days postinfection \pm standard deviation

^c Incubation period similar compared to animals inoculated with the HY TME agent alone (P>0.05)

n.a. - not applicable

s.n. – sciatic nerve

Prion strain interference is in VMNs

• How can DY TME prevent HY TME from causing disease?

The only detectable change is the deposition of DY PrP^{Sc}

Bartz et al., 2007; Shikiya et al., 2010 Journal of Virology

• The dominant strain suppresses but does not eliminate replication of the minor strain

Prion pathogenesis

Coinfecting Prion Strains Compete for a Limiting Cellular Resource⁷⁺ Ronald A. Shikiya,¹ Jacob I. Ayers,¹ Charles R. Schutt,¹ Anthony E. Kincaid,^{1,2} and Jason C. Bartz^{1*}

Jason C. Bartz,^{1*} Michelle L. Kramer,¹ Meghan H. Sheehan,¹ Jessica A. L. Hutter,¹ Jacob I. Ayers,¹ Richard A. Bessen,³ and Anthony E. Kincaid²

Coinfecting Prion Strains Compete for a Limiting Cellular Resource⁷ Ronald A. Shikiya,¹ Jacob I. Ayers,¹ Charles R. Schutt,¹ Anthony E. Kincaid,^{1,2} and Jason C. Bartz^{1*} Departments of Medical Microbiology and Immunology¹ and Physical Therapy,² Creighton University, Omaha, Nebraska 68178

Incongruity between Prion Conversion and Incubation Period following Coinfection

Katie A. Langenfeld,^a Ronald A. Shikiya,^a Anthony E. Kincaid,^{a,b} Jason C. Bartz^a

	PMCA strain interference									
				500 µg eq. HY TME +	50 µg eq. HY TME +	5 µg eq. HY TME +	5x10 ⁻¹ μg eq. HY TME +	5x10 ⁻² μg eq. HY TME +		
PMCA round	500 µg eq. HY TMF	500 µg eq. DY TMF	Mock	500 µg eq. DY TMF	500 µg eq. DY TMF	500 µg eq. DY TMF	500 µg eq. DY TMF	500 µg eq. DY TMF		
1	HY	DY	-	HY/DY	DY	DY	DY	DY		
2	HY	DY	-	HY	HY	DY	DY	DY		
3	HY	DY	-	HY	HY	DY	DY	DY		
4	HY	DY	-	HY	HY	HY	HY	DY		
5	HY	DY	-	HY	HY	HY	HY	DY		
6	HY	DY	-	n.d	n.d	n.d	n.d	DY		
7	HY	DY	-	n.d	n.d	n.d	n.d	DY		
8	HY	DY	-	n.d	n.d	n.d	n.d	DY		
9	HY	DY	-	n.d	n.d	n.d	n.d	HY		
10	HY	DY	-	n.d	n.d	n.d	n.d	HY		

- 1. Strain interference is governed by the relative onset of prion replication between the strains in a common population of cells.
- 2. Prion strains compete for PrP^C.
- 3. The blocking strain can suppress replication, but does not eliminate, the superinfecting strain.

Protein Misfolding Cyclic Amplification Generates infectious prions

	Result for indicated inoculum ^a						
	РМСА	generated	Brain derived				
Dilution	Incubation period (days ± SEM)	No. of hamsters affected/total no. inoculated Incubation period		No. of hamsters affected/total no. inoculated			
10 ⁻²	83 ± 3^{b}	5/5	61 ± 3	5/5			
10^{-3}	93 ± 3	5/5	71 ± 3	5/5			
10^{-4}	99 ± 4	5/5	79 ± 9	5/5			
10^{-5}	164 ± 111	5/5	89 ± 6	5/5			
10^{-6}	186 ± 24	5/5	98 ± 2^{b}	5/5			
10^{-7}	214 ± 11	3/5	134 ± 9^{b}	4/5			
10^{-8}	>400	0/5	192 ± 54^{b}	3/5			
10^{-9}	>400	0/5	$>400^{b}$	0/5			
None (mock	>400	0/5	>400	0/5			
inoculation)	10	^{8.6} LD ₅₀	10 ⁹	^{9.3} LD ₅₀			

• In vitro PMCA generation of high titer HY TME agent.

HY PrP^{Sc} deposition in hippocampus & corpus callosum

- Following i.c. inoculation, HY PrP^{Sc} is detected in the hippocampus and corpus collosum.
- Lack of PrP^{Sc} deposition is not due to a lack of ability to replicate in hippocampus.

Ayers et al., 2009 Journal of Virology

Temporal and spatial spread of HY and DY PrP^{Sc}: Deposition at clinical disease

CNS region	Presence of PrP ^{Sc} after inoculation of ^a :		
	HY TME	DY TME	
Brain stem			
Trigeminal motor nucleus	+	+	
Trigeminal principal sensory nucleus	+	+	
Facial motor nucleus	+	+	
Hypoglossal nucleus	+	+	
Forebrain			
Hippocampus			
Dentate gyrus	0	+	
Hippocampus proper	0	+	
Subiculum	0	+	
Thalamus	+	+	
Hypothalamus	+	+	
White matter			
Cerebellar white matter	+	+	
Corpus callosum	0	+	
Anterior commissure	0	+	
Cingulum	0	+	
External capsule	0	+	

 a +, present; 0, absent.

PrP^{Sc} deposition is more widespread in DY TME infected hamsters compared to HY
 Ayers et al., 2009 Journal of Virology
 TME infected hamsters.

What is the composition of the sciatic nerve?

- Both sensory, motor, and sympathetic axons
 - ~ 6% motor
 - ~ 71% sensory
 - ~ 23% sympathetic
- Inoculation in this nerve should present the agent to all fiber types.
- Inject dextran into sciatic nerve

Prion and prion-like diseases

Schekel & Aguzzi, 2018